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Resummation of Super-Leading Logarithms 



Super-leading and non-global logarithms



Super-Leading Logs (SLLs)?
Consider gaps between jets aka interjet energy 
flow observable: 

  

Large logarithms           with 

• e+e− :  m ≤ n, leading logs m = n 

• p p : 
3

Qjet

gap

Forshaw, Kyrieleis, Seymour ’06 ’08, …
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Logarithms generally arise from ``incomplete cancellation’’ 
of soft and collinear regions of diagrams. At NLO in e+e− 

4

soft+collinear divergence

wide-angle soft
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ŝ � pX � ⇤QCD

Z ⌦

0
d! ln! ⇥ �(!)

�(Q,Q0) =
1X

l=2

⌦
Hl({n0}, Q, µh)⌦

1X

m�l

Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)
↵
, (1)

U({n}, µs, µh) = P exp

Z µh

µs

dµ

µ
�({n}, µ)

�

= 1 +

Z µh

µs

dµ

µ
�(Q,µ) +

Z µh

µs

dµ

µ

Z µh

µ

dµ
0

µ0 �(Q,µ
0)�(Q,µ) + . . .

S ⇠
X

Xs

��� hXs|S(n)S(n̄) |0i
���
2

�0
↵sCF

4⇡

✓
µ
2

Q2

◆✏ 
� 4

✏2
� 6

✏
+ . . .

�
(2)

L = ln Q
µ

�0
↵sCF

4⇡

✓
µ
2

Q2

◆✏ 
+

4

✏2
+

6

✏
� 4 ln(r)

✏
+ . . .

�
(3)

�0
↵sCF

4⇡

✓
µ
2

Q
2
0

◆✏ 
4 ln(r)

✏
+ . . .

�
(4)

L = ln Q
µ

�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

<latexit sha1_base64="GGK0oS9rNRWXkQU2H4nkM9AaWZ8=">AAAB/XicdVBNSwMxEM3Wr1q/6sfNS7AIeqnZqrU9CKIXjxWsLbS1zKZpG5rNLklWqIv4V7x4UMSr/8Ob/8ZsW0FFHww83pthZp4XCq4NIR9Oamp6ZnYuPZ9ZWFxaXsmurl3pIFKUVWkgAlX3QDPBJasabgSrh4qB7wlW8wZniV+7YUrzQF6aYchaPvQk73IKxkrt7IbCx7hpQF4Xdpogwj7sFXbb2RzJk+JheZ9gkj8k7lG5bAkhxdJ+AbuWJMihCSrt7HuzE9DIZ9JQAVo3XBKaVgzKcCrYXaYZaRYCHUCPNSyV4DPdikfX3+Ftq3RwN1C2pMEj9ftEDL7WQ9+znT6Yvv7tJeJfXiMy3VIr5jKMDJN0vKgbCWwCnESBO1wxasTQEqCK21sx7YMCamxgGRvC16f4f3JVyLvF/MHFQe7kdBJHGm2iLbSDXHSETtA5qqAqougWPaAn9OzcO4/Oi/M6bk05k5l19APO2ydzmJP3</latexit>

r = tan2(↵/2)

<latexit sha1_base64="vi17EnWXHuqF4vyE7Y3mh1DVc7U=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ6bv7opuXFawD2iHkkkzbWwmGZKMUEr/wY0LRdz6P+78GzNtBRU9cOFwzr3ce08Qc6YNQh/O2vrG5tZ2Zie7u7d/cJg7Om5rmShCW0RyqboB1pQzQVuGGU67saI4CjjtBJOr1O/cU6WZFLdmGlM/wiPBQkawsVK7j3k8xoNcHrmoUq4XEURuGXnVet0ShCq1YgF6lqTIgxWag9x7fyhJElFhCMda9zwUG3+GlWGE03m2n2gaYzLBI9qzVOCIan+2uHYOz60yhKFUtoSBC/X7xAxHWk+jwHZG2Iz1by8V//J6iQlr/oyJODFUkOWiMOHQSJi+DodMUWL41BJMFLO3QjLGChNjA8raEL4+hf+TdsH1Km7pppRvXK7iyIBTcAYugAeqoAGuQRO0AAF34AE8gWdHOo/Oi/O6bF1zVjMn4Aect0/4F49q</latexit>↵

<latexit sha1_base64="JpanTy2uv1xsXM/2oHy1ufAjBO4=">AAAB9HicdVDLSgMxFM3UV62vqks3wSK4ccj03YVQdOOygn1AO5RMmrahmcyYZApl6He4caGIWz/GnX9jpq2gogcuHM65l3vv8ULOlEbow0qtrW9sbqW3Mzu7e/sH2cOjlgoiSWiTBDyQHQ8rypmgTc00p51QUux7nLa9yXXit6dUKhaIOz0LqevjkWBDRrA2kju4LF7kezRUjAein80hG5VLtQKCyC4hp1KrGYJQuVrIQ8eQBDmwQqOffe8NAhL5VGjCsVJdB4XajbHUjHA6z/QiRUNMJnhEu4YK7FPlxouj5/DMKAM4DKQpoeFC/T4RY1+pme+ZTh/rsfrtJeJfXjfSw6obMxFGmgqyXDSMONQBTBKAAyYp0XxmCCaSmVshGWOJiTY5ZUwIX5/C/0krbztlu3hbzNWvVnGkwQk4BefAARVQBzegAZqAgHvwAJ7AszW1Hq0X63XZmrJWM8fgB6y3T1Gukdg=</latexit>

d = 4� 2✏



• In e+e− collinear contributions cancel between real and 
virtual, only soft single logarithm (per order) remains. 

• Using finiteness of σ, one can reconstruct log either from 
computation of loop + hard emission or soft emission  

• knowledge of divergences sufficient ↔ anomalous 
dimensions in SCET! 

• soft limit for hard emissions good enough 
• Soft limit of amplitudes has simple eikonal form

5

q momentum of soft gluon   
ε polarization vector
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Jets from Quantum Chromodynamics

George Sterman
Institute for Theoreticat Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

Steven Weinberg
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 26 July 1977)

I'he properties of hadronic jets in e e annihilation are examined in quantum chromo-
dynamics, without using the assumptions of the parton model. We find that two-jet events
dominate the cross section at high energy, and have the experimentally observed angular
distribution. Estimates are given for the jet angular radius and its energy dependence.
%e argue that the detailed results of perturbation theory for production of arbitrary num-
bers of quarks and gluons can be reinterpreted in quantum chromodynamics as predic-
tions for the production of jets.

The observation' of hadronic jets in e'e anni-
hilation provides one of the most striking con-
firmations of the parton picture. ~ In particular,
the distribution of events in the angle 8 between
the jet axis and the e'-e beam line is observed
to be very close to the form 1+cos'8 that would
be expected for the production of a pair of rela-
tivistic charged pointlike particles of spin ~.
We shall argue here that the existence, angular
distribution, and some aspects of the structure
of these jets follow as consequences of the per-
turbation expansion' of quantum chromodynam-
ics' (QCD), without assuming the parton picture
(in particular, the transverse-momentum cutoff)
in advance. Thus, the observed features of jets
provide evidence for an underlying asymptotical-
ly free gauge field theory with elementary spin- —,

'
quarks. We also wish here to demonstrate a gen-
eral approach, which may be applicable to a wide
range of high-energy phenomena.
Our procedure is to define a partial cross sec-

tion for jet production, which in asymptotically
free theories like QCD can be calculated perturba-
tively at high energy. By ordinary dimensional
analysis, any sort of total or partial cross sec-
tion in QCD can be written in the form

c=E-'f(m/E, qs, x),
where E is the energy; x stands for all other di-
mensionless variables characterizing the final
state; m stands for all mass variables; and gE
is the gauge coupling constant, defined at a re-
normalization point with four-momenta of order
E. [We express the cross section in terms of gs,
rather than a coupling g, defined at a renormal-
ization point with momenta of arbitrary scale e,

in order to avoid factors of In(E/x). Physical
quantities are of course independent of the choice
of renormaliza. tion point. ] Even in asymptotica. l-
ly free theories, where g~-0 as E -~, it is gen-
erally not possible to calculate the cross section
perturbatively for large E, because the cross
section will exhibit singularities for m/E -0. It
is of course for this reason that asymptotic free-
dom has as a rule been used directly to justify
perturbative calculations of Green's functions and
Wilson coefficient functions, rather than cross
sections themselves.
However, by performing various sums over

states, it is possible to define a wide range of
cross sections which are free of m -0 singulari-
ties. To learn what they are, we observe that
quantum field theories of massless particles have
always been found (in the absence of superre
nor malizable couplings) to be physically sensible,
i, e., that any cross section which would actually
be measurable in such a massless theory is free
of infrared divergences in each order of perturba-
tion theory. ' Hence in the real world with m &0,
any sort of partial cross section which wouM be
measurable for m =0 is expected to be free of
singularities in m as m —0, and can therefore be
calculated perturbatively' in QCD for E -~.
For instance, the cross section for production

of a definite number of particles does have singu-
larities for m -0, because for m =0 we could
not expect to be able to tell the difference between
one particle or several particles moving in the
same direction. At the opposite extreme, the
total cross section for e+e -hadrons would
clearly be measurable even for 'zero quark mass,
and hence must be free of singularities in m (to

1436

μ: gluon mass
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lowest order in o.) for m -0. Indeed, although
the original application of asymptotic freedom to
this process was by way of the vacuum-polariza-
tion Green's function at Euclidean momentum, '
it is easier to justify the use of QCD perturba-
tion theory' here directly, by working with the
cross section itself.
To study jets, we consider the partial cross

section o(E, 8, Q, e, 6) for e+e hadron production
events, in which all but a fraction e «1 of the
total e'e energy E is emitted within some pair
of oppositely directed cones of half-angle 6«1,
lying within two fixed cones of solid angle Q (with
nb'«Q «1) at an angle 8 to the e'e beam line.
We expect this to be measurable for m=0, be-
cause the only quarks or gluons which are likely
to be diffracted or radiated away from a calorim-
eter at 8 have very long wavelength, and so
carry negligible energy. Thus o should be free
of mass singularities for m -0, and calculable

by a perturbation expression in g~ for F. -~.
We have calculated o(E, 8, Q, c, 6) to order ge'.

It proved algebraically convenient to set the
quark masses equal to zero from the beginning,
but to use a finite gluon mass p. «eE as an in-
frared cutoff in intermediate stages of the calcu-
lation. To order g~', 0 receives contributions
from three distinct kinds of final state'. (a) One
jet may consist of a quark or antiquark plus a
hard (energy ~eE) gluon, the other jet of just an
antiquark or quark; (b) there may be a quark in
one jet, an antiquark in the other, and a soft (en-
ergy - eE) gluon which may or may not be in one
of the jets; (c) there may be just a quark and anti-
quark, one in each of the jets. Working to order
g~', we evaluate the contributions of (a) and (b)
using only tree graphs, while for (c) we include
the tree graph and its interference with one-loop
graphs. The respective contributions to 0 are
then

o, = (do/dQ) 0 Q(g~'/3 v') [—3 ln(E 6/ p) —2 ln'2e —4 ln(E 5/ p) ln(2e) + —", —m'/3 J,
v, = (do/dQ), Q(g~'/Sv') [2 ln'(2eE/ p) —~'/6],
o, = (do/dQ), Q(1+ (ge'/Sm') [-21n'(E/p) + 3 ln(E/p) —+ +~'/6]],

where (do/dQ), is the cross section for e e —qq in Born approximation:
(4)

dQ 4E'0 fl avors
(5)

As expected, each separate contribution is singular for p, -0, but cancellations occur in the sum, and
the final result is free of mass singularities:

a(E, 8, Q, e, 5) = (dv/dQ)0 Q[1—(g~'/3&') (3 ln5+41nb ln 2m+ v'/3 ——,')]. (6)

This formula immediately demonstrates the
dominance of two-jet final states at very high
energy where gz'/Sm' is small. By summing Eq.
(6) over a, set of cones of solid angle Q that fill
the 4m steradians around the e+e collision, and
comparing the result with the QCD expression'
(1+g~'/4m') v, for the total cross section, we see
that the fraction of all events which have all but
a fraction ~ of their energy in some pair of oppo-
site cones of half-angle 6 is

f= I —(g~'/Sw')(3 1n6+41n51n2e+ z2/3 ——,') . (7)
If gz'/3&' «I, then even if we take e and 5 to be
moderately small, the two-jet probability f will
be close to unity. To be quantitative, suppose we
define a, jet angular radius 5(E), by requiring that
70% of all events have at least 80/p of their energy
emitted within two cones of half-angle 6(E). Set-

ting f=0.7 and e =0.2 in Eq. (7), and using the
asymptotic QCD formula9 g~' = 24m'/25 ln(E/A)
with A= 500 MeV, we find that 6(E) is about 13'
at the energy E =7.4 GeV of current experiments, '
and decreases as E '" at higher energies. In
contrast, with a fixed transverse-momentum cut-
off P~, we would expect a. jet angular radius y(E)
which would decrease much faster, like I/E or
(lnE)/E. At relatively low energy q(E) will be
greater than 6(E), so that our calculation of the
jet radius is probably invalidated by the nonper-
turbative effects' associated with I'~. However,
at sufficiently high energy 5(E) becomes greater
than y(E), and perturbation theory becomes valid
for angular radii down to 5(E). The angle 6(E)
then defines the outermost angular distance from
the jet axis at which any appreciable hadron en-
ergy is to be found. Even at such high energies,
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be close to unity. To be quantitative, suppose we
define a, jet angular radius 5(E), by requiring that
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Non-cancellation of collinear terms

Blue: collinear emission.  Red: Glauber/Coulomb phase 

Note: Glauber phases cancel in e+e− and in large-Nc limit
7
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Double logarithms due to soft+collinear configurations.
Forshaw, Kyrieleis, Seymour ’06 ’08; Catani, de Florian, Rodrigo ’11, …



An SLL diagram

hard partons, 
soft ``Glauber’’ iπ, 
soft emission, 
collinear to 1,  
soft emission into 
gap region.

8

+ virtual corrections  
+ many more, related diagrams

see Keates and Seymour ’09 for diagrammatic SLL calculation 
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Previous results on SLLs
Since effect first arises at              , only few results 

• Discovery of effect, computation of first SLL in gaps 
between jets for qq →qq Forshaw, Kyrieleis, 
Seymour ‘06 

• Colour space calculation of leading SLL Forshaw, 
Kyrieleis, Seymour ‘08 

• Diagrammatic calculation, first two orders, different 
channels qq, qg, gg Keates and Seymour ‘09
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O(↵4
s)

We have repeated the same calculation also for the case qq → qq when the exchanged

particle is a color singlet. In this case the color structure of the tree level is trivial and

reads

H
S
4 = δα3α1

δα4α2
δβ1β3

δβ2β4
σ0 (4.11)

The associated matrix element reads
〈

H
S
4

(

ΓL
)n−m

ΓI
(

ΓL
)m

ΓIΓ
〉

= −σ0 π
2 CFN

n
c 2m+n+8 [J1 − 2 (1 − δn,m)J2] (4.12)

The singlet and octet operators form a basis of color structures for four-quark processes,

so any such process can be obtained as a linear combination of the two matrix elements

(4.10) and (4.12).

[Should we also do the other partonic channels?]

4.1 Comparison with the literature

Previous work on superleading logarithms has analyzed two jet production with a rapidity

gap ∆Y [2, 3, 6]. More precisely, one considers two cones around the beam directions and

imposes that the two hard final-state jets are inside these cones. One then measures the

energy flow into the rapidity gap ∆Y between the two cones. This “gap between jets”

setup was proposed to study the interplay of color coherence and hadronisation and as a

window into Regge dynamics and, potentially, new physics [7, 8]. Subsequently such cross

sections were studied both experimentally [9–13] and theoretically, see e.g. [14, 15]. In the

earlier works on soft radiation, it was assusmed that real and virtual effects completely

cancel inside the cones. The main discovery of [2] was that this cancellation is spoiled by

the presence of the imaginary parts in the virtual part of the amplitudes.

In this setup we can easily evaluate the two integrals which arise and we find that both

of them are simply proportional to the rapidity gap

J1 = 2∆Y sign(ηJ ) J2 = ∆Y (4.13)

This is trivial for J2, but it is interesting that, up to an overall sign, the dependence on the

scattering angle of the final-state jets cancels in the particular linear combination relevant

for J2 after integrating over the azimuthal angle. Previous computations of superleading

logarithms have only considered the ηJ > 0 case and we also adopt this choice to compare.

We can now compute the total contribution at each order as

S(n+3) =
n
∑

m=0

S(n+3)
m (4.14)

and compare to the results in [2, 3, 6]. For the first few orders for color-octet exchange we

get

S(3)
O =

(αs

4π

)3
L3
Q∆Y π2 32

3
(−CF )σ0 ,

S(4)
O =

(αs

4π

)4
L5
Q∆Y π2 8

15

(

3N2
c − 4

)

σ0 ,

S(5)
O =

(αs

4π

)5
L7
Q∆Y π2 4

315
Nc

(

−27N2
c + 44

)

σ0 ,

(4.15)

– 8 –

Glauber (iπ)2 
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Soft radiation in global observables
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e.g. thrust T ~ 1

d�

dT
= H · J ⌦ S
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ΛNP ≫
√
s ≫ pTJet ≫ Eout ≫ mproton ∼ ΛQCD

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G2 |0⟩+ . . .

αn
s ln

m

(

q2T
M2

)

R(Q0) = σveto
t̄t (Q0)/σ

tot
t̄t

L(2)
SM = −µ2H†H = −C(2) Λ2 H†H

q2T
Q2

, τ = (1− T ), . . .

2mt ≫
√
ŝ ≫ pX ≫ ΛQCD

∫ Ω

0
dω lnω × δ(ω)

σ(Q,Q0) =
∞
∑

l=2

〈

Hl({n′}, Q, µh)⊗
∞
∑

m≥l

Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)
〉

, (1)

U({n}, µs, µh) = P exp

[
∫ µh

µs

dµ

µ
Γ({n}, µ)

]

= 1 +

∫ µh

µs

dµ

µ
Γ(Q,µ) +

∫ µh

µs

dµ

µ

∫ µh

µ

dµ′

µ′
Γ(Q,µ′)Γ(Q,µ) + . . .

S ∼
∑

Xs

∣

∣

∣
⟨Xs|S(n)S(n̄) |0⟩

∣

∣

∣

2

Soft radiation does not resolve individual 
energetic partons. Sensitive only to 
direction and total charge of the jets

Simple structure → N3LL resummation
arXiv today: paper by Forshaw and Holguin on Glauber 
effects in pp event shapes, e.g. transverse thrust.



Dasgupta, Salam ’02: soft gluons from secondary emissions inside the 
jets lead to complicated pattern of logs (αs L)n, with L = ln(Q/Q0)


• Even leading NGLs do not simply exponentiate!


• At large Nc logs can be obtained with parton shower Dasgupta,  
Salam ‘02 or by solving a non-linear integral equation Banfi, 
Marchesini, Smye ’02. First finite-Nc results Hatta, Ueda ’13 + 
Hagiwara ‘15 based on Weigert ’03;  De Angelis, Forshaw and 
Plätzer ’20
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Non-global logarithms (NGLs)
Q0

Q Q

Q0
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Resummation of SLLs



Outline
• Factorization theorem for non-global 

observables 

• Resummation by RG evolution 

• One-loop anomalous dimension 

• Glauber/Coulomb phases 

• Collinear logarithms 

• Super-leading logarithms 

• Order-by-order computation and 
resummation
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As discussed, soft radiation in non-global 
observables has a complicated structure: 

  

  

Hard partons (quarks and gluons) inside jets act 
as sources: soft radiation pattern depends on 
color-charges and directions of all hard partons!

14

gap:

 2Egap < Q0

unrestricted Ein ~ Q

→ large logs αsn lnn(Q0 / Q) 



Hard function
m hard partons along  

fixed directions {n1, …, nm} 

Factorization for gap between jets in e+e− 

Soft function 
squared amplitude  
with m Wilson lines

integration over directions color trace

TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].
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σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm⟩⟨Mm| (4)
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Soft emissions in process with m energetic particles 
are obtained from the matrix elements of the operator 

  

To get the amplitudes with additional soft partons, 
one takes the matrix element of the multi-Wilson-line 
operators:

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵
n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where n
µ

i
= p

µ

i
/Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form

– 5 –

hard scattering amplitude 
with m particles 

(vector in color space)

soft Wilson lines along the directions  
of the energetic particles / jets 

(color matrices)

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

⟨k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0⟩ (2.11)

of the Wilson-line operator. To obtain the contribution of an arbitrary number of soft par-

tons to the jet cross section, one first defines the squared matrix element for the emissions

from m partons as

Sm({n}, Qβ, δ) =
∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Qβ−2E out) .

(2.12)

This is the same as the coft function which arises for narrow-angle jets [38], up to the

fact that the constraint now acts on the out-of-cone energy E out of the soft radiation, as

opposed to n̄ · p out, the large component of the total momentum of the coft fields. Since

the soft function depends on the outside energy, it depends on the cone size δ. In terms of

the matrix element (2.12), the jet cross section takes the form

σ(β, δ) =
1

2Q2

∞∑

m=2

m∏

i=1

∫
dd−1pi

(2π)d−12Ei
⟨Mm({p})|Sm({n}) |Mm({p})⟩

× (2π)d δ(Q −Etot) δ
(d−1)(p⃗tot)Θ

nn̄
in

({
p
})

, (2.13)

up to terms suppressed by powers of β. The integration is over the m-dimensional phase-

space of the hard partons, which are all constrained to lie inside the two jet cones. The

function Θnn̄
in

({
p
})

ensures that the hard partons are either inside the right jet along the

direction n or the left jet along n̄. In the narrow-cone case, we will encounter constraints

which involve only one of the jets. Note that, due to the multipole expansion, the contri-

bution of soft particles must be neglected in the momentum-conservation δ-functions.

In order to write the cross section in a more transparent way, we now define hard

functions which are obtained by integrating over the energies of the hard particles subject

to the constraint that their sum is equal to the center-of-mass energy Q, while keeping

their directions nµ
i fixed,

Hm({n}, Q, δ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEi E

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θ

nn̄
in

({
p
})

. (2.14)

These hard functions are distribution-valued in the angles of the particles, since they

contain additional divergences which arise when particles become collinear. These real-

emission divergences get cancelled by the divergences associated with the virtual correc-

tions to amplitudes with fewer legs. In contrast, the soft function (2.12) is regular in the

angles. The function H2({n}, Q) = σ0 H(Q2)1, where H(Q2) = |CV (−Q2 − iϵ)|2 is the

– 8 –
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Factorization theorem:

• Separates contributions from scales Q and Q0  

• Valid in the soft limit Q0/Q → 0 up to power corrections 

• Operator definitions of ingredients 

• Provides a natural way to perform resummation via 
renormalization group (RG) evolution 

• Not limited to leading logarithms or leading color

17

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].
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Resummation by RG evolution
Wilson coefficients fulfill RG equations 

   

1. Compute Hm at a characteristic high scale 
μh ~ Q  

2. Evolve Hm to the scale of low energy 
physics μs ~ Q0 

3. Evaluate Sm at low scale μs ~ Q0 

Avoids large logarithms αsn lnn(Q/Q0) of scale ratios 
which spoil convergence of perturbation theory.

RG
 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

2

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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•       analogous to e+e− but low energy matrix 
element         in SCET contains soft Wilson 
lines + collinear fields for incoming partons 

• Leading order matrix element 

• Low-E theory at μ ~ Q0 involves Glauber 
gluons, which mediate soft-collinear 
interactions. Rothstein, Stewart ’16 

• Rapidity divs. generate single logs of Q

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
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2Ei
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. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
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↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
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RG
 evolution

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
ΛQCD
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ΛNP ≫
√
s ≫ pTJet ≫ Eout ≫ mproton ∼ ΛQCD

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G2 |0⟩+ . . .

αn
s ln

m

(

q2T
M2

)

R(Q0) = σveto
t̄t (Q0)/σ

tot
t̄t

L(2)
SM = −µ2H†H = −C(2) Λ2 H†H

q2T
Q2

, τ = (1− T ), . . .

2mt ≫
√
ŝ ≫ pX ≫ ΛQCD

∫ Ω

0
dω lnω × δ(ω)

σ(Q,Q0) =
∞
∑

l=2

〈

Hl({n′}, Q, µh)⊗
∞
∑

m≥l

Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)
〉

, (1)

U({n}, µs, µh) = P exp

[
∫ µh

µs

dµ

µ
Γ({n}, µ)

]

= 1 +

∫ µh

µs

dµ

µ
Γ(Q,µ) +

∫ µh

µs

dµ

µ

∫ µh

µ

dµ′

µ′
Γ(Q,µ′)Γ(Q,µ) + . . .
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• RG 
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (17)

2
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dt
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H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (20)
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
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0
dt
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0)e�(t0�t)Vn (13)
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d

d lnµ
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d

d lnµ
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lm
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t =

Z
↵(Q)

↵(µ)

d↵

�(↵)

↵

4⇡
(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (22)

2

shower evolution time

Q0
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Arises from taking product of soft currents   

and performing energy integral to extract soft 
divergence.

1-loop soft anomalous dimension
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must find that
∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

Due to the structure of the matrix, only the diagonal terms zm,m, and the terms zm,m+1

above the diagonal can contribute to the renormalization of Sm at the one-loop-level.

Explicitly, the finiteness condition at one-loop order reads

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

+ Sm({n}, Qβ, δ, ϵ) = finite , (5.3)

where we have used Sm = 1+ O(αs), so that the Z-factors multiply the identity matrix.

In the second term we integrate over the angle of the additional emission.

One can easily obtain the divergent part of the one-loop soft functions, since it is given

by a sum of exchanges between two legs. A sample Feynman diagram is shown in Figure 10.

We get

Sm({n}, Qβ, δ, ϵ) = 1+
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) , (5.4)

where we have introduced the dipole radiator

W k
ij =

ni · nj

ni · nk nj · nk
. (5.5)

The function Θnn̄
out(nk) = 1 − Θnn̄

in (nk) ensures that the gluon is outside the two jet cones

around the n and n̄ directions. Note that the angular integral does not suffer from collinear

divergences, since the vectors ni and nj lie inside the jet cones, while the direction nk

associated with the soft emission points outside the cone. (The soft radiation can also be

emitted inside the cone, but as mentioned earlier this contribution is scaleless, since it does

not have an upper limit on the energy of the emission.)

In (5.3), the quantity zm,m represents the divergences of the virtual corrections to

the amplitude with m legs, while zm,m+1 gives the divergences from an additional real

emission. Let us now consider the real and virtual corrections together, since all collinear

divergences drop out and only a single soft divergence remains. The leading divergence can

be obtained by using the soft approximation for the emitted (real or virtual) gluon. In the

soft approximation, the real-emission contribution factorizes as

g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij Ti,L · Tj,RΘ

nn̄
in (k)Hm({n}, Q− Ek) . (5.6)

In this approximation, one can write the virtual correction in the same form as the real-

emission contribution, because the principal-value part of the propagator of the emission

does not contribute. The virtual correction then reads

−g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij
1

2
(Ti,L·Tj,L+Ti,R·Tj,R)Hm({n}, Q−Ek)

[
Θnn̄

in (k) +Θnn̄
out(k)

]
.

(5.7)
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soft dipole
attachment to legs i, j 

new parton along direction k

Glauber/Coulomb

Πij = 1 if both inc./out.  
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Structure                     produces extra parton! 

Loop in amplitude                  or conjugate    

                           becomes trivial in large-Nc limit.
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m+ 1 external legs, while
the virtual correction (red) HmVm has m legs.
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real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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Simplification of imaginary part
Consider process 1 + 2 → 3 + … + m and use 
color conservation 

Phase terms only present in pp, not in e− p or e+e−
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contain both amplitudes |Mm({p})⟩ and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

[Better notation? Standard color-space notation not very well suited to add

new colored partons.] and the index a is the color of the emitted gluon. Note that there

is no sum over the color a. The color sum will only be taken at the end after multiplying

with the soft function. We nevertheless like to keep the scalar product notation Ti,L · Tj,R

since it allows us to suppress the color index, which is one of the advantages of the color-

space formalism. However, when applying the matrix Rm one needs to keep in mind that

one changes into new color space and that subsequent applications of color matrices can

act on the new color index.

Note that the terms in the second line of (1.2) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑

(ij)

Ti · Tj Πij = 2T1 · T2 +
m
∑

i=3

Ti · (−T1 − T2 − Ti) (1.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m
∑

i=3

Ci (1.8)

= 4T1 · T2 + C1 + C2 −
m
∑

i=3

Ci (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

– 2 –
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√
s ≫ pTJet ≫ Eout ≫ mproton ∼ ΛQCD

R =
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s ln

m

(

q2T
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)
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t̄t (Q0)/σ
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L(2)
SM = −µ2H†H = −C(2) Λ2 H†H

q2T
Q2

, τ = (1− T ), . . .

2mt ≫
√
ŝ ≫ pX ≫ ΛQCD

∫ Ω

0
dω lnω × δ(ω)

σ(Q,Q0) =
∞
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l=2

〈

Hl({n′}, Q, µh)⊗
∞
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〉
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different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
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i Hm T

a
j . (1.5)

[Better notation? Standard color-space notation not very well suited to add

new colored partons.] and the index a is the color of the emitted gluon. Note that there

is no sum over the color a. The color sum will only be taken at the end after multiplying

with the soft function. We nevertheless like to keep the scalar product notation Ti,L · Tj,R

since it allows us to suppress the color index, which is one of the advantages of the color-

space formalism. However, when applying the matrix Rm one needs to keep in mind that

one changes into new color space and that subsequent applications of color matrices can

act on the new color index.

Note that the terms in the second line of (1.2) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑
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Ti · Tj Πij = 2T1 · T2 +
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The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the
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Πij = 1 if both inc./out.  



Collinear singularities

Rm and Vm contain singularities when emitted gluon k gets 
collinear to partons i or j 

• Expect cancellation in inclusive observables (showers 
put collinear cutoff on Rm and Vm )  

• Glauber phases spoil this cancellation: soft+collinear 
double logarithms! ``Super-leading logarithms’’
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must find that
∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

Due to the structure of the matrix, only the diagonal terms zm,m, and the terms zm,m+1

above the diagonal can contribute to the renormalization of Sm at the one-loop-level.

Explicitly, the finiteness condition at one-loop order reads

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

+ Sm({n}, Qβ, δ, ϵ) = finite , (5.3)

where we have used Sm = 1+ O(αs), so that the Z-factors multiply the identity matrix.

In the second term we integrate over the angle of the additional emission.

One can easily obtain the divergent part of the one-loop soft functions, since it is given

by a sum of exchanges between two legs. A sample Feynman diagram is shown in Figure 10.

We get

Sm({n}, Qβ, δ, ϵ) = 1+
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) , (5.4)

where we have introduced the dipole radiator

W k
ij =

ni · nj

ni · nk nj · nk
. (5.5)

The function Θnn̄
out(nk) = 1 − Θnn̄

in (nk) ensures that the gluon is outside the two jet cones

around the n and n̄ directions. Note that the angular integral does not suffer from collinear

divergences, since the vectors ni and nj lie inside the jet cones, while the direction nk

associated with the soft emission points outside the cone. (The soft radiation can also be

emitted inside the cone, but as mentioned earlier this contribution is scaleless, since it does

not have an upper limit on the energy of the emission.)

In (5.3), the quantity zm,m represents the divergences of the virtual corrections to

the amplitude with m legs, while zm,m+1 gives the divergences from an additional real

emission. Let us now consider the real and virtual corrections together, since all collinear

divergences drop out and only a single soft divergence remains. The leading divergence can

be obtained by using the soft approximation for the emitted (real or virtual) gluon. In the

soft approximation, the real-emission contribution factorizes as

g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij Ti,L · Tj,RΘ

nn̄
in (k)Hm({n}, Q− Ek) . (5.6)

In this approximation, one can write the virtual correction in the same form as the real-

emission contribution, because the principal-value part of the propagator of the emission

does not contribute. The virtual correction then reads

−g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij
1

2
(Ti,L·Tj,L+Ti,R·Tj,R)Hm({n}, Q−Ek)

[
Θnn̄

in (k) +Θnn̄
out(k)

]
.

(5.7)
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If angular integrals involve divergences we must 
make them explicit! In pure dim. reg. the soft 
anomalous dimension reads 

and involves subtracted dipole distribution

26

→ superleading logs  
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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ŝ
,

(11)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k

ij

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij

⇥hard(nm+1)

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
(12)

V c

i
= 4Ci 1

Rc

i
= �4Ti,L � Ti,R �(nk � ni)

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei

+ �(nk � nj) ln
µ

2Ej

i
�W

m+1
ij

⇥hard(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej

+

Z
d⌦(nk)

4⇡
W

k

ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (13)

(14)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei

= �
X

i

Ti,L · Ti,L ln
µ

2Ei

= �
X

i

Ci ln
µ

2Ei

(15)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei

= +
X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei

(16)

� = �+ �G +
X

i

�c

i
ln

µ
2

ŝ
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Collinear terms can be simplified using color 
conservation. 

Virtual pieces become 

and for real-emissions 

Final-state terms will cancel between real and 
virtual. Can restrict sums to i = 1, 2.
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Final form of anomalous dimension (partonic 
CMS,                          ) 

with collinear subtracted       and        and 
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Computation of SLLs

29

Now compute order by order 

Need products of anomalous dimensions. Each μ 
integral produces single log (    ,      ) or double 
logs (      ), i.e. SLLs!      

Will set μh=Q and μs=Q0 and ignore running of αs. 
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ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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i=1(R
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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ni · nj

ni · nk nj · nk
� �(nk � ni)
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
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i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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Evaluation of Crn : Step 1
Basic strategy is to commute       and       to the 
right: 

• Need               and   

Both commutators lead to the same structure 

with angular integrals
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of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
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the virtual correction (red) HmVm has m legs.
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tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the
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gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =
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L2n+3 (�4)n n!
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.

4

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain
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⌘
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The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
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+ 2 (1 � �r0) J2
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H4
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CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
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�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc

X
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⌦
H4 (�c)r V GT a

1 T b
2 T c
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↵
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d⌦(nk)
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⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:
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.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get
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with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:
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⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering
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While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can
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The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1
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�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
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The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get
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with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:
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where w = Nc↵s
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While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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Evaluation of Crn : Step 2
Now commute remaining       and      ‘s to the right. 
Leads to anti-commutators of color matrices.  

Many independent structures but for incoming 
(anti-)quarks we can simplify   

which leads to a result with only three structures 
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Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(11)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1)

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
(12)

V c
i = 4Ci 1

Rc
i = �4Ti,L � Ti,R �(nk � ni)

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (13)

(14)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(15)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(16)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X
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Z
dx1dx2

1X

m=4
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Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (17)
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc
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⌦
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1 T b
2 T c

j

↵

⇥
Z
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4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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Evaluation of Crn : Step 3
Evaluate remaining color structures explicitly for 
given partonic channel, e.g.  (                     ) 

  

and evaluate associated μ integrals and sum 
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

singlet

octet
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The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can
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ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation
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where the color-space formalism implies that �i = 1 for
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state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
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The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get
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with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.



Resummed result
The dependence of Crn on n and r is power-like 
and it is possible to carry out the sums.  

Simplest case is singlet 

with                           .  
  

Note: Standard Sudakov has form            .
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The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
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Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can
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The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:
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The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get
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with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:
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where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering
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4CF

3⇡
↵3
s L3�Y 2F2
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While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.
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We have automated the application of the anomalous 
dimension and then evaluated resulting color traces 
using ColorMath Sjödahl ’12. 

• reproduce 4 and 5 loops results of Forshaw, 
Kyrieleis, Seymour ’06 ’08, Keates, Seymour ’09 

• for qq→qq our code runs up to 8 loop order, for 
other channels 6 or 7 loops 

• agrees with expanded analytic result 

• this is how we first noticed the simple higher-
order structure in this channel…
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Checks



• Effect is only significant if logs are large. 
• Very sensitive to choice of μ in αs: should 

include running!
37
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FIG. 2. Super-leading logarithms in quark-quark scattering

summed up to four-loop (red), five-loop (blue) and infinite

order (black). The solid and dashed lines refer to the color

octet and singlet channel, respectively.

In Figure 2, we evaluate the partonic qq ! qq scatter-
ing cross sections for the octet and singlet channels. In
order to only show the e↵ect of SLLs, we plot the partial
sums

PN
n=1 �̂SLL

n for di↵erent values of N . This omits
the three-loop contribution from ��̂, but note that also
this term is due to complex phases not captured in con-
ventional parton showers, see e.g. [21]. Due to the high
power of ↵s, the SLLs are only significant if the loga-
rithms are sizeable, and their e↵ect is quite sensitive to
the choice of scale in ↵s(µ). In the plot we set µ = Q0.

So far we have discussed the case of 2 ! 2 scatter-
ing, but an analogous relation with H4 replaced by H2+l

holds for a (anti-)quark-initiated 2 ! l jet process with
l � 0. In particular, we find that SLLs also arise for
processes with less than two final-state jets, a fact that
has not been appreciated in the literature. For 2 ! 0
processes such as qq̄ ! V , where V = �, Z0, W± is a col-
orless boson, the sum over j in (18) is absent, and color
conservation implies that

Crn = ��̂B 29�r⇡2CF (4Nc)
n(2r � 2)(1 � �r0) J2 , (22)

which vanishes for n = 1. The SLLs therefore start at
5-loop order, one order higher than in the general case.
For 2 ! 1 scattering processes such as qq̄ ! V + jet, the
only term in the sum has j = 3, and one can use color
conservation to obtain

Crn = �̂B 210�r⇡2 (4Nc)
n�1 �

N2
c + 2r � 2

�
(1 � �r0) J2 .

(23)
These contributions start at four-loop order. In the liter-
ature [2, 7], it has been stated that SLLs only arise when
there are at least two colored partons in the final state,
but as we have shown the emission into the gap originat-
ing from � supplies the necessary additional parton for
the 2 ! 1 case. For 2 ! 0 scattering the second final-
state parton arises from a collinear emission in �c, which
explains why the e↵ect is delayed by one order.

In this Letter we have solved the outstanding open
problem of resumming SLLs for a large class of non-global
observables at hadron colliders, thereby accounting for
the leading logarithmic corrections to such processes for
the first time. Our RG-based approach provides a trans-
parent understanding of the underlying physics, and our
analytical results should be useful in the ongoing e↵ort to
generalize parton showers to finite Nc, see e.g. [22–25]. It
will be interesting to perform a detailed analysis of SLLs
for an observable such as the gap fraction, including the
full set of partonic channels and accounting for running-
coupling e↵ects. Our findings indicate that SLLs could
have an appreciable e↵ect on precision observables, in
particular in Higgs production, where higher-order e↵ects
are generally large. Indeed, we find that the perturba-
tive coe�cients in gluon-induced 2 ! 0 processes are an
order of magnitude larger than in the quark case studied
here [20].
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Other hard processes
Our analysis of the SLL matrix elements 

does not rely on any properties of       and hold 
for any hard matrix element  

• Process dependence only from the 3 final 
color matrix elements! 

• SLLs also arise in qq → Z + j at four loops      
and qq → Z and gg → H at five loops. In 
Higgs production with large color factor.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2
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Summary and Outlook
• First resummation of (super-)leading logs for non-global observable 

in hadronic collisions 
• presented quark channel in my talk, paper with general result is 

in preparation TB, Neubert, Shao 
• should perform full analysis of hadronic cross section 
• important to go beyond crude LL limit (running coupling, higher 

powers of    ,    … ) 

• Interesting to analyze low-E matrix element in LSCET, Glauber 

• Rapidity logs, RG invariance, PDF factorization, … 
• Important ongoing work toward a full-color shower which includes 

these effects. Angeles Martinez, De Angelis, Forshaw, Plätzer, 
Seymour ’18; De Angelis, Forshaw, Plätzer ‘20
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• qq →V, vanishes for n=1 

• qq →V + j

5

FIG. 2. Super-leading logarithms in quark-quark scattering

summed up to four-loop (red), five-loop (blue) and infinite

order (black). The solid and dashed lines refer to the color

octet and singlet channel, respectively.

In Figure 2, we evaluate the partonic qq ! qq scatter-
ing cross sections for the octet and singlet channels. In
order to only show the e↵ect of SLLs, we plot the partial
sums

PN
n=1 �̂SLL

n for di↵erent values of N . This omits
the three-loop contribution from ��̂, but note that also
this term is due to complex phases not captured in con-
ventional parton showers, see e.g. [21]. Due to the high
power of ↵s, the SLLs are only significant if the loga-
rithms are sizeable, and their e↵ect is quite sensitive to
the choice of scale in ↵s(µ). In the plot we set µ = Q0.

So far we have discussed the case of 2 ! 2 scatter-
ing, but an analogous relation with H4 replaced by H2+l

holds for a (anti-)quark-initiated 2 ! l jet process with
l � 0. In particular, we find that SLLs also arise for
processes with less than two final-state jets, a fact that
has not been appreciated in the literature. For 2 ! 0
processes such as qq̄ ! V , where V = �, Z0, W± is a col-
orless boson, the sum over j in (18) is absent, and color
conservation implies that

Crn = ��̂B 29�r⇡2CF (4Nc)
n(2r � 2)(1 � �r0) J2 , (22)

which vanishes for n = 1. The SLLs therefore start at
5-loop order, one order higher than in the general case.
For 2 ! 1 scattering processes such as qq̄ ! V + jet, the
only term in the sum has j = 3, and one can use color
conservation to obtain

Crn = �̂B 210�r⇡2 (4Nc)
n�1 �

N2
c + 2r � 2

�
(1 � �r0) J2 .

(23)
These contributions start at four-loop order. In the liter-
ature [2, 7], it has been stated that SLLs only arise when
there are at least two colored partons in the final state,
but as we have shown the emission into the gap originat-
ing from � supplies the necessary additional parton for
the 2 ! 1 case. For 2 ! 0 scattering the second final-
state parton arises from a collinear emission in �c, which
explains why the e↵ect is delayed by one order.

In this Letter we have solved the outstanding open
problem of resumming SLLs for a large class of non-global
observables at hadron colliders, thereby accounting for
the leading logarithmic corrections to such processes for
the first time. Our RG-based approach provides a trans-
parent understanding of the underlying physics, and our
analytical results should be useful in the ongoing e↵ort to
generalize parton showers to finite Nc, see e.g. [22–25]. It
will be interesting to perform a detailed analysis of SLLs
for an observable such as the gap fraction, including the
full set of partonic channels and accounting for running-
coupling e↵ects. Our findings indicate that SLLs could
have an appreciable e↵ect on precision observables, in
particular in Higgs production, where higher-order e↵ects
are generally large. Indeed, we find that the perturba-
tive coe�cients in gluon-induced 2 ! 0 processes are an
order of magnitude larger than in the quark case studied
here [20].
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Perform μ integrals and sum series and get 

with                         and coefficient functions
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factorials in terms of Γ-functions and performing the sums, we obtain the following results

for the coefficient functions:

fδ(w) =
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3 2F2
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5

2
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f1(w) =

√
π

2w

∫

√
w

2

0

dz

z2

[
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i
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]

. (4.22)

Mathematica is able to perform the integral for f1(t) and express it in terms of Owen’s

T -function at imaginary argument. Note that all three functions are equal to 1
3 at w = 0.

In Figure 1 we show plots of them. At large w, which is the relevant region for LQ ∼ 1/αs

the functions fall off as w−1, much slower than standard double logarithmic contributions,

which decrease exponentially.

In terms of the functions in (4.20), the resummed result for the superleading logarithms

in color octet exchange reads
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while the singlet result is

SS =
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CF {−2J1 f1(w) + 4J2 (f1(w) − fδ(w))} σ0 . (4.24)

Let us consider again the gap between jets case, where J1 and J2 are given by (4.13). In

this case, we find that
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π2 ln3

Q

µs

1

Nc

(

N2
c (4f1(w)− 2fδ(w)) − 4f2 + 2fδ(w)

)

∆Y σ0 .

SS =
(αs

π

)3
π2 ln3

Q

µs
(−4CF fδ(w))∆Y σ0 .

(4.25)

One immediately verifies that (4.15) and (4.16) are recovered upon expanding in w.

A Iterated integrals

Expanding the path-ordered exponential in (4.2), we encounter at the n-th order the inte-

grals
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Figure 1. The functions f1, f2 and fδ which arise in the resummation.

while the singlet case evaluates to
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These results indeed agree with the ones obtained diagrammatically in [6] if one sets µs =

QT the transverse energy in the gap. [The goal will now be to match the scale

dependence of the lowest terms using Glauber/Soft computations.]

4.2 Resummation of the super-leading logarithms

With the explicit result at the n-th order, it is of course interesting to resum the series,

especially since up to now a resummation of superleading logarithms has never been per-

formed. Looking that the results, we see that we need to perform different double sums to

reconstruct the full result. All of these can be written in terms of the expansion parameter

w =
αs

π
Nc ln

2 Q

µ
(4.17)

and coefficient

cn,m =
(−2)n(2(n −m)− 1)!!

(n+ 1)(2n + 3)!!(2(n −m))!!
. (4.18)

The contributions of the different terms in the matrix elments can be expressed in terms

of the three three sums

(f1(w), f2(w), fδ(w)) =
∞
∑

n=0

n
∑

m=0

(

2m−n , 1 , δnm
)

cn,m wn . (4.19)

To evaluate them, it is convenient to first multiply by w and take the derivative. This

removes the factor (n + 1) in the denominator of cn,m in (4.18) and we can then indepen-

dently sum over n = m and ñ = n−m which both run from 0 . . .∞. Rewriting the double
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factorials in terms of Γ-functions and performing the sums, we obtain the following results

for the coefficient functions:

fδ(w) =
1

3 2F2

(

1, 1; 2,
5

2
;−w

)

, (4.20)

f2(w) =
1

w
−

√
π

2w3/2
erf

(√
w
)

, (4.21)

f1(w) =

√
π

2w

∫

√
w

2

0

dz

z2

[

erf (z)−
e−2z2

i
erf(iz)

]

. (4.22)

Mathematica is able to perform the integral for f1(t) and express it in terms of Owen’s

T -function at imaginary argument. Note that all three functions are equal to 1
3 at w = 0.

In Figure 1 we show plots of them. At large w, which is the relevant region for LQ ∼ 1/αs

the functions fall off as w−1, much slower than standard double logarithmic contributions,

which decrease exponentially.

In terms of the functions in (4.20), the resummed result for the superleading logarithms

in color octet exchange reads

SO =
(αs

π

)3
π2 ln3

Q

µs

1

Nc

{

J1
(

N2
c − 1

)

f1(w)

+J2
[

2N2
c (f1(w)− fδ(w)) + 2(f1(w)− 2f2(w) + fδ(w))

]}

σ0 , (4.23)

while the singlet result is

SS =
(αs

π

)3
π2 ln3

Q

µs
CF {−2J1 f1(w) + 4J2 (f1(w) − fδ(w))} σ0 . (4.24)

Let us consider again the gap between jets case, where J1 and J2 are given by (4.13). In

this case, we find that

SO =
(αs

π

)3
π2 ln3

Q

µs

1

Nc

(

N2
c (4f1(w)− 2fδ(w)) − 4f2 + 2fδ(w)

)

∆Y σ0 .

SS =
(αs

π

)3
π2 ln3

Q

µs
(−4CF fδ(w))∆Y σ0 .

(4.25)

One immediately verifies that (4.15) and (4.16) are recovered upon expanding in w.

A Iterated integrals

Expanding the path-ordered exponential in (4.2), we encounter at the n-th order the inte-

grals

∫ µh

µs

dµ1

µ1

∫ µ1

µs

dµ2

µ2
· · ·

∫ µn−1

µs

dµn

µn
ΓH(Q,µ1)Γ

H(Q,µ2) . . . Γ
H(Q,µn)

=

∫ µh

µs

dµn

µn
. . .

∫ µh

µ3

dµ2

µ2

∫ µh

µ2

dµ1

µ1
ΓH(Q,µ1)Γ

H(Q,µ2) . . . Γ
H(Q,µn) (A.1)

– 10 –

octet H4

s

<latexit sha1_base64="TKPhufx+jXzJ09CmON2oLUBM9LE=">AAAAAHicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1a5X6bR5HEc7gHC7Bg2uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A3/WM+w==</latexit>



Coefficient functions

Observe ``Sudakov’’ suppression at large w, also 
for super-leading logs. 
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Figure 1. The functions f1, f2 and fδ which arise in the resummation.

while the singlet case evaluates to

S(3)
S =

(αs

4π

)3
L3
Q∆Y π2 32

3
CF σ0 ,

S(4)
S =

(αs

4π

)4
L5
Q∆Y π2 32

15
Nc (−CF )σ0 ,

S(5)
S =

(αs

4π

)5
L7
Q∆Y π2 128

315
N2

cCF σ0 .

(4.16)

These results indeed agree with the ones obtained diagrammatically in [6] if one sets µs =

QT the transverse energy in the gap. [The goal will now be to match the scale

dependence of the lowest terms using Glauber/Soft computations.]

4.2 Resummation of the super-leading logarithms

With the explicit result at the n-th order, it is of course interesting to resum the series,

especially since up to now a resummation of superleading logarithms has never been per-

formed. Looking that the results, we see that we need to perform different double sums to

reconstruct the full result. All of these can be written in terms of the expansion parameter

w =
αs

π
Nc ln

2 Q

µ
(4.17)

and coefficient

cn,m =
(−2)n(2(n −m)− 1)!!

(n+ 1)(2n + 3)!!(2(n −m))!!
. (4.18)

The contributions of the different terms in the matrix elments can be expressed in terms

of the three three sums

(f1(w), f2(w), fδ(w)) =
∞
∑

n=0

n
∑

m=0

(

2m−n , 1 , δnm
)

cn,m wn . (4.19)

To evaluate them, it is convenient to first multiply by w and take the derivative. This

removes the factor (n + 1) in the denominator of cn,m in (4.18) and we can then indepen-

dently sum over n = m and ñ = n−m which both run from 0 . . .∞. Rewriting the double
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while the singlet case evaluates to
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These results indeed agree with the ones obtained diagrammatically in [6] if one sets µs =

QT the transverse energy in the gap. [The goal will now be to match the scale

dependence of the lowest terms using Glauber/Soft computations.]

4.2 Resummation of the super-leading logarithms

With the explicit result at the n-th order, it is of course interesting to resum the series,

especially since up to now a resummation of superleading logarithms has never been per-

formed. Looking that the results, we see that we need to perform different double sums to

reconstruct the full result. All of these can be written in terms of the expansion parameter

w =
αs

π
Nc ln

2 Q

µ
(4.17)

and coefficient

cn,m =
(−2)n(2(n −m)− 1)!!

(n+ 1)(2n + 3)!!(2(n −m))!!
. (4.18)

The contributions of the different terms in the matrix elments can be expressed in terms

of the three three sums

(f1(w), f2(w), fδ(w)) =
∞
∑

n=0

n
∑

m=0

(

2m−n , 1 , δnm
)

cn,m wn . (4.19)

To evaluate them, it is convenient to first multiply by w and take the derivative. This

removes the factor (n + 1) in the denominator of cn,m in (4.18) and we can then indepen-

dently sum over n = m and ñ = n−m which both run from 0 . . .∞. Rewriting the double
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4 (Super-)leading logarithms

The simplest example one can consider is the partonic process q1 q′2 → q3 q′4, whose tree-

level amplitude has color structure taα3α1
taα4α2

from gluon exchange. The tree-level hard

function then takes the form

H4 =
4

N2
c − 1

taα3α1
taα4α2

tbβ1β3
tbβ2β4

σ0 (4.1)

where the indices βi belong to the conjugate amplitude. The Born-level cross section σ0
depends on the scattering angle. The color average needed to get the tree-level cross section

from the hard function is obtained by contracting the initial and final-state color indices.

At tree level, this contraction produces tr
(

tatb
)

tr
(

tatb
)

= (N2
c − 1)/4 and we normalized

with this factor so that ⟨H4⟩ = σ0.

To obtain the logarithmic part of the cross section, we expand the evolution factor

which multiplies the hard function as

H4U(µs, µh) = H4P exp

[
∫ µh

µs

dµ

µ
ΓH(Q,µ)

]

(4.2)

= H4 +

∫ µh

µs

dµ

µ
H4 Γ

H(Q,µ) +

∫ µh

µs

dµ

µ

∫ µh

µ

dµ′

µ′
H4Γ

H(Q,µ′)ΓH(Q,µ) + . . .

Since the soft functions are trivial, the cross section is obtained by computing the color

trace and performing the µ integrations. To obtain the result in RG-improved perturbation

theory, one rewrites the integrations as integrals over the running coupling and expands

the integrands in the coupling. For our discussion of the leading-logarithmic terms we

set µh = Q and do not consider the running of the coupling. The µ-integrals become

simple but one needs to keep track of are powers of the anomalous dimensions V L
i and RL

i

which induce an extra power of ln(µ/Q) into the integrands. The n-fold integrals without

logarithms in the anomalous dimension produce a factor lnn(Q/µ)/n!, general expressions

for integrals with logarithms in the anomalous dimensions are derived in Appendix A.

The first non-zero contribution of the phase factors arises at 3 loops and takes the form

S(3) =
〈

H4V
I
V

I(V 4 +R4)
〉

(αs

4π

)3 1

3!
ln3

(

Q

µ

)

= −
(αs

4π

)3 16CF

3
π2L3

Q J1 σ0 (4.3)

where LQ = ln µ2

Q2κ and

J1 =

∫

dΩ(n5)

4π

(

−W 5
13 +W 5

14 +W 5
23 −W 5

24

)

Θout(n5) , (4.4)

Note that this integral is finite and we can replace the subtracted dipoles with regular ones

as long as κ is small enough. The expression (4.3) should be read from left to right. We

start with H4, apply the imaginary part of the anomalous dimension twice and then add

the regular piece, which includes a real emission. Note that we give the result for products

of the hard function and anomalous dimension matrices.
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