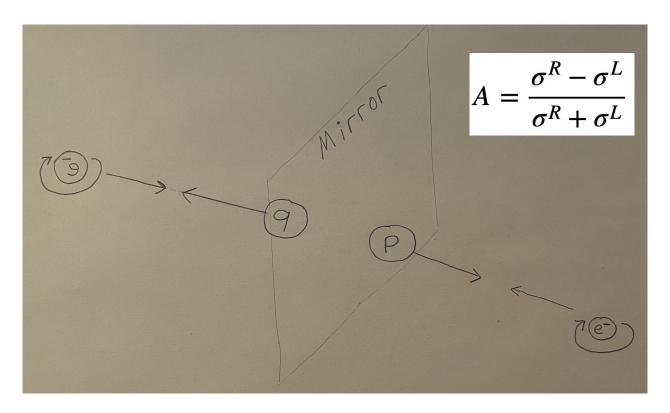

Parity-Violating Asymmetry

Saajid Chowdhury


Definitions

- x =fraction of proton's total momentum carried by quark/gluon struck by electron
- Q^2 = squared momentum transferred to electron
- Differential cross section = $\frac{d^2\sigma}{dx dQ^2}$ as a function of certain x, Q²; probability that event has kinematics within dx,
- Spin polarization = fraction (component) of electron spin directed towards its momentum, ranges from +1 to -1
- Structure functions = e.g. $F_2(x, Q^2)$, factors in cross section formulas, sensitive to quark distributions (over x and Q^2) in proton

Physics

Goals

- Simulate events with polarized electrons (helicity +1, -1) to see if EIC can measure asymmetries
 - To use asymmetries more precisely calculate structure functions
- Compare asymmetries for each x, Q^2 from simulation to theory

Work so far

- Ran 10 million events each for electron spin polarizations +1, -1
- Plotted asymmetry vs. x for $Q^2 = 2.0, 5.1, 8.2, 12.9, 20.5, 51.5, 129.2, 514.5 \text{ GeV}^2$
- Compared to theory

Math

Givens:

$$\begin{split} \frac{d^2\sigma}{dx\,dy} &= \frac{4\pi\alpha^2}{xyQ^2} \Biggl(\Biggl(1-y+\frac{y^2}{2}\Biggr) F_2^{NC} + \Biggl(y-\frac{y^2}{2}\Biggr) x F_3^{NC} \Biggr) \\ F_2^{NC} &= F_2^{\gamma} - (g_V^e - \lambda g_A^e) \eta_{\gamma Z} F_2^{\gamma Z} \\ x F_3^{NC} &= - (g_A^e - \lambda g_V^e) \eta_{\gamma Z} x F_3^{\gamma Z} \Biggr) \end{split}$$
 (Tanabashi et al.)

Some approximations:

$$Q^2 \gg M \to x^2 y^2 M^2/Q^2 \approx 0$$
 neglect $(g_V^e)^2, (g_A^e)^2$

$$2F_1^{\gamma}x = F_2^{\gamma}$$
 (Callan-Gross)

Goal: express in terms of structure functions:

$$A = \frac{\sigma^R - \sigma^L}{\sigma^R + \sigma^L}$$

More math

$$\sigma_{r} = \frac{1}{1 - y + y^{2}/2} \frac{xyQ^{2}}{4\pi\alpha^{2}} \frac{d^{2}\sigma}{dx dy}$$

$$\sigma_{r} = F_{2}^{NC} + \frac{y - y^{2}/2}{1 - y + y^{2}/2} xF_{3}^{NC}$$

$$Y_{\pm} = 1 \pm (1 - y)^{2}$$

$$\sigma_{r} = F_{2}^{NC} + \frac{Y_{-}}{Y_{+}} xF_{3}^{NC}$$

$$A = \frac{\sigma_{r}^{R} - \sigma_{r}^{L}}{\sigma^{R} + \sigma^{L}}$$

$$A = \frac{g_A^e \eta_{\gamma Z} x F_1^{\gamma Z} + \frac{Y_-}{2Y_+} \left(g_V^e \eta_{\gamma Z} x F_3^{\gamma Z} \right)}{x F_1^{\gamma} - g_V^e \eta_{\gamma Z} x F_1^{\gamma Z} - \frac{Y_-}{2Y_+} \left(g_A^e \eta_{\gamma Z} x F_3^{\gamma Z} \right)}$$

$$\text{neglect } -g_V^e \eta_{\gamma Z} x F_1^{\gamma Z} \text{ and } -\frac{Y_-}{2Y_+} \left(g_A^e \eta_{\gamma Z} x F_3^{\gamma Z} \right)$$

$$A = \eta_{\gamma Z} \left(g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + \frac{Y_-}{2Y_+} g_V^e \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right)$$

$$\eta_{\gamma Z} = \frac{G_F Q^2}{2\sqrt{2} - g_Z}$$

Asymmetry Formula

$$A = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left(g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V^e \frac{Y_-}{2Y_+} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right)$$

(Y. X. Zhao et al.)

Executables for running events

```
[saajidchowdhury@eic0101 djangoh]$ cat ep.Rad=0.NC.Apve.in
OUTFILENAM
outfiles/diangoh.NC.Apve.noRad.20x250
TITLE
DJANGOH 4.6.10 for eRHIC for PR, LO at 20x250, Wmin=1.4
EL-BEAM
           20D0
                   -1.000
                             -1
PR-BEAM
            250D0
                   0.000
RNDM-SEEDS
LHAPATH
/gpfs/mnt/gpfs01/eic/data/LHAPDF59SHARE/lhapdf/PDFsets
START
                10000000
```

```
[[saajidchowdhury@eic0101 djangoh]$ cat run ep Apve norad.sh
#!/usr/bin/bash
echo "-----"
echo "Running DJANGOH Simulation for ep Collider!!!"
echo "..."
echo ""
OUTFILE1=outfiles/djangoh.NC.Apve.noRad.20x250 evt.dat
if test -f "$OUTFILE1"; then
        rm -f "$OUTFILE1"
fi
OUTFILE2=outfiles/djangoh.NC.Apve.noRad.20x250 out.dat
if test -f "$OUTFILE2"; then
        rm -f "$OUTFILE2"
fi
#Create file for random number generation
 ./make_random.py
 djangoh < ep.Rad=0.NC.Apve.in > logfiles/ep.Rad=0.NC.Apve.log
 echo "Completed Simulation!!!"
 echo ""
echo "Making Output ROOT File..."
 root -l -b -g 'make tree.C("djangoh.NC.Apve.noRad.20x250 evt.dat")'
 echo "Done!!!"
```

Condor: computing cluster

```
[[saajidchowdhury@eic0101 djangoh]$ cat cond.sub
Universe = vanilla
Notification = Never
Executable = run_ep_Apve_norad.sh
GetEnv = True
Input = /dev/null
Output = jobout/cond.out
Error = jobout/cond.err
Log = jobout/cond.log
Queue
```

Python: Calculate theory

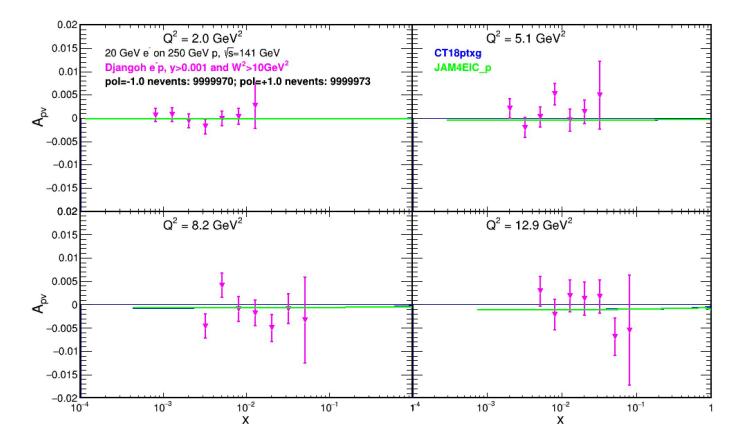
- Hardcode constants
- For each PDF set:
 - For selected Q² values, for several x values:
 - Get structure function values from PDF set
 - Calculate asymmetry
 - Output Q^2 , x, asymmetry to file

Reaction	Structure Functions	Index
$e^{\pm} + T \rightarrow e^{\pm} + X$	$F_2^{\gamma},\; F_L^{\gamma}$	900, 901
	$F_2^{\gamma Z},\; F_L^{\gamma Z},\; F_3^{\gamma Z}$	902, 903, 904

https://jeffersonlab.github.io/txgrids/_build/html/grids.html

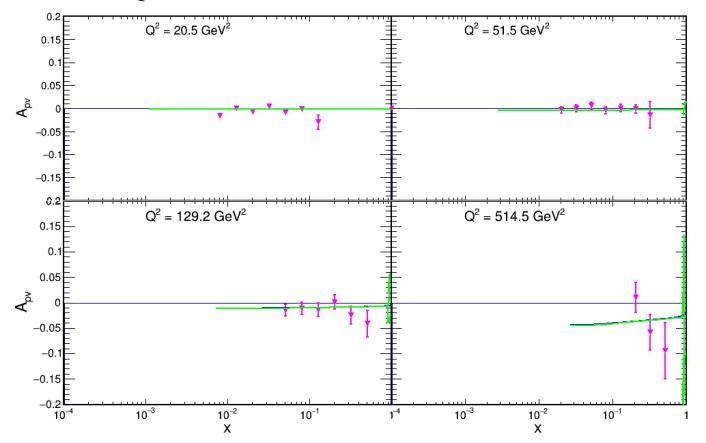
ROOT: Plot asymmetry

- Theory graph method:
 - given file containing theoretical asymmetries from given PDFset, make TGraph


Main method:

- Hardcode constants
- Set up bins x, Q^2
- Calculate bin yields for polarizations +1,-1
- Calculate bin asymmetries
- Plot A(x) for selected Q^2 values

```
//For each x,Q^2 bin:


n1 = t1->GetEntries()
n2 = t2->GetEntries()
L1 = n1 / crosstot1
L2 = n2 / crosstot2
A[i][j] = (L2 * N1 - L1 * N2) /
(L2 * N1 + L1 * N2);
```

Plots: $Q^2 = 2.0, 5.1, 8.2, 12.9$

CT18ptxg = NNLO JAM4EIC = NLO

Plots: $Q^2 = 20.5, 51.5, 129.2, 514.5$

CT18ptxg = NNLO JAM4EIC = NLO

Plans for Future

- Use Condor Queue command to run 100 million events by running in parallel 10 instances of 10 million events each
 - Using Dan's and Barak's python script to generate random seeds for Djangoh to prevent duplicate random numbers
- Account for detector effects (e.g. radiation)
- Understand theory more
- Make code more efficient and concise
- AI

- applied to particle identification detectors, Experimental Design and Simulations, Reconstruction/Analysis, Control of Experimental Systems, Detector Readout, and Computing Frontiers

Citations

M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018) and 2019 update 6th December, 2019 11:50am, page 3

Y. X. Zhao et al.: Neutral Weak Interactions at an EIC, page 2

LHAPDF grids (txgrids) from https://jeffersonlab.github.io/txgrids/ build/html/grids.html

Barak