Inclusive Group Report # ATHENA Bi-weekly meeting 22 July 2021 Paul Newman (Birmingham) Barak Schmookler (Stonybrook) Qinghua Xu (Shandong) ### Two tasks: - Detector configuration benchmarking - Producing 'golden' plots for proposal ## **Benchmarking Detector Configurations** #### NC DIS cross section - → Underlying observable for much of EIC physics - → Good quality, well understood, generators exist - → Sensitive to systematics on electron ID / reconstruction, response to overall hadronic final state, QED radiation ... ### - Total cross section in photoproduction ($Q^2 \rightarrow 0$) limit → Benchmarking beamline / low angle instrumentation in the outgoing electron direction #### CC DIS cross section? → Dedicated studies of hadronic response at large Q²? [can also be done with NC samples] # Readiness to study ATHENA Full-detector Simulations? - Person-power exists (Stony Brook, Birmingham, BNL, UC Riverside ...) - Tools being developed using samples from Yellow Report studies and simple smearing tools. | | Minimum bias simulation data available from the yellow report effort | | | | | | | | | | | |-------------|--|---------------------|--|---------------------|-------------------------|----|---------|---------------------|---|--------------|-------------------------| | Data
Set | Generator | Beam
Energies | Run Information | Number of
Events | Int.
Luminosity | 9 | Djangoh | 5x41 GeV e- | $Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF | ~10 million | 0.014 fb ⁻¹ | | 1 | Pythia6 | 5x41 GeV e-
p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 100 million | 0.14 fb ⁻¹ | 10 | Djangoh | 5x100 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | ~10 million | 0.011 fb ⁻¹ | | 2 | Pythia6 | 5x41 GeV e- | Q ² > 3.0 GeV ² ; NC unpolarized; QED
Radiation OFF | 100 million | 0.96 fb ⁻¹ | 11 | Djangoh | 10x100 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | ~10 million | 9.1e-3 fb ⁻¹ | | 3 | Pythia6 | 5x100 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 15 million | 0.016 fb ⁻¹ | 12 | Djangoh | 18x275 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | ~10 million | 6.6e-3 fb ⁻¹ | | 4 | Pythia6 | 10x100 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 11 million | 9.9e-3 fb ⁻¹ | 13 | Djangoh | 27.6x920
GeV e+p | Q ² > 1.5 GeV ² ; NC unpolarized; QED
Radiation OFF | ~2.5 million | 3.5e-3 fb ⁻¹ | | 5 | Pythia6 | 10x110 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 15 million | 0.013 fb ⁻¹ | 14 | Pythia6 | 5x41 GeV e- | Q ² down to photo-production limit;
NC unpolarized; QED Radiation OFF | 500 million | 6.3e-3 fb ⁻¹ | | 6 | Pythia6 | 18x110 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 15 million | 0.011 fb ⁻¹ | 15 | Pythia6 | 10x100 GeV
e-p | Q ² down to photo-production limit;
NC unpolarized; QED Radiation OFF | 300 million | 2.3e-3 fb ⁻¹ | | 7 | Pythia6 | 18x275 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation OFF | 15 million | 9.0e-3 fb ⁻¹ | 16 | Pythia6 | 18x275 GeV
e-p | Q ² down to photo-production limit;
NC unpolarized; QED Radiation OFF | 300 million | 1.7e-3 fb ⁻¹ | | 8 | Pythia6 | 27.5x920
GeV e+p | Q ² > 1.5 GeV ² ; NC unpolarized; QED Radiation OFF | 10 million | 0.011 fb ⁻¹ | 17 | Djangoh | 10x100 GeV
e-p | Q ² > 0.5 GeV ² ; NC unpolarized; QED
Radiation ON | ~15 million | 0.013 fb ⁻¹ | Still need more detailed evaluation of overall Full-Sim sample sizes required ... meeting between physics working group conveners, needed soon (many overlaps!) # Readiness to study ATHENA Full-detector Simulations? - Reviewing systematic sources and evaluation methods starting from Yellow Report - Developing plans for small set of key quantities / systematics to be used in benchmarking e.g. calo energy scales, charged pion rejection-power ... N.C. systematic uncertainties | | Point-to-Point (%) | Normalization (%) | | | |---|-------------------------------|---------------------|--|--| | Statistics (10 fb ⁻¹) | 0.01-0.35 | - | | | | Luminosity | - | ~1 | | | | Electron Purity | - | ~1 (for 90% purity) | | | | Bin-Centering | <0.5 | <0.5 | | | | Radiative Corrections (HERA) | 1 | - | | | | Acceptance / Bin-Migration +
Trigger & Tracking Eff. + Charge-
Symmetric Background | 1-2 | 2-4 | | | | Additional uncertainty for y<0.01 bins | 2 | - | | | | Total | 1.5-2.3
(2.5-3 for y<0.01) | 2.5-4.3 | | | - \rightarrow (x, Q²) resolution with electron, hadron, mixed methods - → Electron ID purity - → Sensitivity to QED radiative effects - → dependence on beam parameters (crossing angle etc)? - Ideas to demonstrate advantages of ATHENA? - → what happens to benchmarking quantities with lower B field? - More detailed person-power assessments and task allocations planned around next Working Group meeting (Mon 26 July) ## **Studies of QED Radiation Effects** - Studies with PYTHIA6 and DJANGO, turning on/off interfaces to QED-radiation simulations - Large corrections as y→1 when using electron method - Work ongoing to understand generators. ## Possible `Golden' Plots (all based on NC DIS) - Derived from fits to NC cross sections - Inclusive proton PDFs - Inclusive nuclear PDFs - Proton spin PDFs - Statements on sensitivity to e.g. new low-x dynamics follow from precision on these quantities - Rekindling interactions with theory / fitting colleagues from Yellow Report