Hadronic Reconstruction of DIS Q², x, y

Miguel Arratia, **Owen Long** UC Riverside July 20, 2021

Motivation and Overview

- In some regions of DIS phase space, using the Hadronic Final State (HFS) to reconstruct the DIS variables (Q2, x, y) is superior to using the scattered electron only.
- Hadronic reconstruction resolution is sensitive to detector acceptance and resolution.
- We may have to rely on fast simulation (Delphes) for physics studies for the Athena proposal, due at the end of the year.
- We can use Fullsim Fastsim comparisons of the H1 detector to learn how to tune the fast simulation of Athena to make it more realistic.

Definitions

- Fastsim reconstruction of Hadronic Final State (HFS)
 - HFS is everything except the scattered electron (NC DIS).
 - Sum of px, py, pz, E of all Energy Flow candidates (tracks, photons, neutral hadrons).
- With HFS and scattered electron, you can compute everything.

$$\Sigma = \sum_{h} (E_h - p_{z,h})$$
$$\tan \frac{\gamma}{2} = \frac{\Sigma}{T}$$
$$T = \sqrt{(\sum_{h} p_{x,h})^2 + (\sum_{h} p_{y,h})^2}$$

From the paper that introduced the Sigma method. <u>U. Bassler and G. Bernardi, NIM A361 (1995) 197-208</u>.

H1 Fastsim

- Recently implemented in Delphes (Miguel).
- Resolutions are set to quoted results for HCAL, but that is single particle response. Might be different for HFS.

H1 Hadronic DIS Reconstruction

This figure is from the paper that introduced the Sigma method.

<u>U. Bassler and G. Bernardi, NIM</u> <u>A361 (1995) 197-208</u>.

Event selection: $Q^2 > 200$

Shows how the HFS and the electron are complementary.

Figure 4: Comparison x_{method}/x at high Q^2 ($Q^2 > 200 \ GeV^2$) for the Σ , mixed, DA and e methods. From top to bottom, each row represent a bin in y: very high (0.5-0.8), high (0.2-0.5), medium (0.1-0.2), low (0.05-0.1), very low (0.01-0.05).

H1 Fullsim MC

We can reproduce the figure from the paper with Fullsim (Django+G3).

H1 Fastsim MC

The resolution for the hadronic reconstruction in the fastsim (Delphes) is too good.

The electron reconstruction is pretty close though.

H1 Fullsim vs Fastsim MC

The resolution for the hadronic reconstruction in the fastsim (Delphes) is too good.

The electron reconstruction is pretty close though.

H1 Geometric Acceptance

This shows the resolution effect of the geometric acceptance *only*.

All generated status=1 MC particles from Pythia that are within |eta|<4 are summed up to make this cheat reconstruction.

Sigma method is robust against acceptance losses, but hadron method is not!

We initially thought this might be a bug, but it's real. See the Extra Slides.

0.50 < y < 0.80 0.20 < y < 0.50 0.10 < y < 0.20 0.05 < y < 0.10

0.01 < y < 0.05

H1 Geometric Acceptance vs Fastsim

This shows the resolution effect of the geometric acceptance *only*.

All generated status=1 MC particles from Pythia that are within |eta|<4 are summed up to make this cheat reconstruction.

Sigma method is robust against acceptance losses, but hadron method is not!

With (too good) fastsim, acceptance alone accounts for a significant fraction of the resolution.

HFS reconstruction distributions, Fullsim vs Fastsim

Electron reconstruction distributions, Fullsim vs Fastsim

Looks pretty good.

H1 Electron and HFS PT resolution, Fastsim vs Fullsim

Electrons look pretty reasonable.

HFS resolution needs some tuning work.

Extra Slides

Generator-level MC HFS, |eta|<2.5

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<3.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<4.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<5.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<6.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<7.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.

Generator-level MC HFS, |eta|<9.0

This is a cheat using all HFS status=1 MC particles.

The only requirement is on the |eta| of the particles.