
sPhenix Conditions Database

09/03/21

Ruslan Mashinistov, Paul Laycock

Introduction

• As a starting point we used the BelleII Conditions
Database

• NPPS software, SDCC operations
• Working stably in production since 2018
• Originally from PNNL, written in Java (I’m main developer

now)

• Design concept: separate metadata from payloads
• The metadata DB is separated from payloads so the CDB
service effectively returns a list of URLs to retrieve the
payloads

2

The Belle II Conditions DB

● A file service (left) serves the conditions data payloads
● The metadata service returns the list of payloads URLs. On

the client side it is trivial to modify the path with a different
prefix, so the preferred location of payloads is usually cvmfs

3

B2 Conditions Database schema

4

Payload IOV report table
aggregates the data
from different tables
Demands the support for
consistency

Streamlining the Server code and DB schema

• Use this as an opportunity to simplify both the
code base and DB schema

• Change from Java to Django for simplicity and
easier to support

• This is an opportunity for Belle II that we are
happy to take

5

New CDB schema

• Implemented schema provides simple navigation from the
Global Tag to the Payloads

• GT has Type and Status (Locked || Unlocked)
• Payloads are grouped by Payload Lists which collect all of the

calibrations of the same type. List also has Type attribute
• Payloads stored together with IOVs presented by two BIGINT

fields: major and minor IOVs - start of the Payload validity.
• One IOV ends where the next IOV starts

6

APIs

• Django implementation is based on rest_framework library
• Implemented APIs:

• “Create” (POST) endpoints. Accept object as JSON
• Query current Payloads for a given Global Tag and IOVs

• Main call from software framework
• Deep copy of the Global Tag

7

API calls

• API can be called with the standard (GET||POST) requests using
cURL or program libraries

• An example of the cURL GET Request:

curl
'http://127.0.0.1:8000/api/cdb/payloadiovs/?gtName=TestM
edGT5&majorIOV=0&minorIOV=1630825065'
[{"id":8977,"name":"TestMedPayloadList0","global_tag":{"id":116,"name":"TestMedGT5","description":"","cr
eated":"2021-09-02T07:33:57.612512","updated":"2021-09-02T07:33:57.612525","status":1,"type":1},"payl
oad_type":{"id":1,"name":"Type1","description":"","created":"2021-08-04T13:54:47.835407"},"payload_iov":[
{"id":6279079,"payload_url":"testPayloadMed4999_8977","major_iov":0,"minor_iov":1630576781,"payload_
list":8977,"created":"2021-09-02T09:59:41.649975"}],"created":"2021-09-02T07:33:57.638153"},...

8

http://127.0.0.1:8000/api/cdb/payloadiovs/?gtName=TestMedGT5&majorIOV=0&minorIOV=1630825065
http://127.0.0.1:8000/api/cdb/payloadiovs/?gtName=TestMedGT5&majorIOV=0&minorIOV=1630825065

Get example
• GT and its Payloads
were migrated from the
BelleII CDB

• The output is the list of
Payload Lists with
PayloadIOVs

9

Payload URL,
major and minor IOVs

POST Request

● POST Requests accept JSON body with Objects
definition

● Global Tag creation example. GT’s definition as JSON:

 {"name": "TestGT1",
 "status": 1,
 "type": 1}

10

curl --header "Content-Type: application/json" --request POST --data
'{"name": "TestGT1","status": 1, "type": 1}'
http://127.0.0.1:8000/api/cdb/gt

http://127.0.0.1:8000/api/cdb/gt

Python example

● Examples of population the
Payload List by 5k PayloadIOVs
and retrieving of the
PayloadIOVs

11

Scalability tests

• Moderate usage of IOVs would be calibrations updated every day (26
weeks of running time)

• 1/day, 7/week, ~200/year of running
• This is 20k payloads assuming 100 payload lists

• Heavy usage of IOVs would be calibrations updated every hour
• 1/hour, 24/day, 168/week, ~5k/year of running
• This is 500k payloads assuming 100 payload lists

• Worst case scenario is that calibrations are updated every 10 minutes,
• 6/hour, 144/day, 1k/week, ~26k/year of running
• Worst case use 200 payload lists to make it painful!
• This is 5 million payloads!

12

Conclusions

• “Demonstrator” prototype is implemented
• Next step is to run number of scalability tests
including test with multiple clients running in parallel

• Prepare 3 testing Global Tags according to the moderate,
heavy and worst case scenarios

• All Payloads have unique names
• Use minorIOV only

• Looking at code optimization

13

