Reconstruction methods in NC

Xiaoxuan Chu 07/26/21

1. Impact of barrel neutron and K_L using Jacquet-Blondel method

- Argument of Hcal in barrel region
- 2. Comparison of reconstruction methods

Calorimetry WG meeting

Final state particles hit map for JB

Data sample: NC from Pythia, ep 18×275 GeV, Q² > 2 GeV²

Jacquet-Blondel method: $y^{rec} = \frac{\sum_{h}(E_h - p_{z,h})}{2E_e}$

final hadronic state: charged hadron + γ + n + K_L + e (except the scattered electron)

Neutrons and K_L relative cross section

 $\frac{middle\ rapidity\ n+K_L}{tol} < 1\%$

y resolution (unsmeared)

- Without detector smearing, the contribution of barrel neutron and K_L is not negligible: cross section of barrel n + K_L is < 1%, however the contribution to y resolution is up to 7%
- E-pz is large for barrel n + K_L, it makes significant difference when reconstructing y without smearing

y resolution (smeared, using HCal)

- Whether barrel neutron and K_L included or not, the resolution is not very good due to bad resolution of Hcal
- Energy of the $n+K_L$ obtained from Hcal: smearing effect can be found in the backup
- Energy of charged hadrons: choose to obtain from Hcal or reconstruct by mass (PID) and momentum (tracking)

How does ElCsmear work for π by HCal

- The energy of charged hadron obtained from Hcal, momentum obtained from tracking
- Large smearing effect induced by Hcal in terms of the energy

How does ElCsmear work for hadron by tracking

- Using mass and momentum of the charged hadrons to reconstruct the energy instead of obtaining energy from Hcal
- Mass is used as charged particle's PDG mass:
 Condition (1) perfect PID applied: proton, kaon, pion identified (above 3 plots)
 Condition (2) using pion mass for proton, kaon and pion

y resolution (smeared, by tracking)

- Difference between w/o barrel n+K_L change from <= 0.07 \rightarrow <=0.04 after smearing
 - energy of charged hadron is obtained from tracking
 - charged hadrons' PID affects the resolution at low y
- A barrel Hcal will improve y resolution of maximum at a level of 0.04 (if unfolding applied, there will be some corrections)

Method comparison

Electron method:

$$y^{rec} = 1 - \frac{E'_e}{E_e} \cos^2\left(\frac{\theta'}{2}\right)$$

Jacquet-Blondel method:

$$y^{rec} = \frac{\sum_{h} (E_h - p_{z,h})}{2E_e}$$

Double Angle method: (JHEP01 (2010) 109)

$$y^{rec} = \frac{\tan\left(\frac{\theta_h}{2}\right)}{\tan\left(\frac{\theta_{e'}}{2}\right) + \tan\left(\frac{\theta_h}{2}\right)}$$
$$\cos(\theta_h) = \frac{\sum_h p_{x,h} + \sum_h p_{y,h} - \sum_h (E_h - p_{z,h})}{\sum_h p_{x,h} + \sum_h p_{y,h} + \sum_h (E_h - p_{z,h})}$$
$$\theta_h \text{ is the hadronic scattering angles}$$

Method comparison at true level

• Double Angle method: off at low Q²; requires high precision tracking at very forward when Q² is low

Check η cut at true level

No cut:

Electron method: the scattered electron without any cut

Jacquet Blondel and Double Angle method: charged hadron + γ + n + K_L+ e (except the scattered electron) without any cut

Double Angle method is very sensitive to hadronic state which belongs to very forward region: Difference is around a factor of 20 w/o forward particle with η >4

Check PID at true level

No cut:

Electron method: the scattered electron without any cut

Jacquet Blondel and Double Angle method: charged hadron + γ + n + K_L + e (except the scattered electron) without any cut

Perfect detector: Jacquet Blondel and Double Angle method: everything except scattered electron

Method comparison after smearing

True level, without smearing

With smearing, Perfect PID for p/K/ π Charged particles energy is obtained from tracking

- Electron method: divergence at small y after including smearing
- Jacquet-Blondel method: good resolution when y<0.15 after smearing
- Double Angle method at low Q²: totally off after smearing

Summary

Whether barrel Hcal is necessary: after smearing,

- if changed hadron's energy is obtained from Hcal, resolution is bad for w/o barrel $n+K_L$
- If changed hadron's energy is obtained from tracking, by including barrel Hcal, maximum resolution improvement is ~ 4% (unfolding will have an impact)

Comparison of electron, JB and DA method:

- With EIC smearing included: electron method works at y>0.15; JB is better at y<0.15
- DA works at high Q²: the hadronic angle is less well-determined than the electron angle due to particle loss in the beampipe; requires high precision forward tracking and PID when Q² is low

Next step: sigma method, e-sigma method

backup

How does ElCsmear work for barrel n+K_L

HCal resolution is bad at barrel region for $n + K_L$: energy obtained from Hcal smearing, momentum obtained from calculation of smeared energy, phi and theta

Be careful using EIC smearing for neutral particles: mass was set to be the energy; momentum was set to be 0. Here I used the energy and mass to calculate the momentum

EIC Smear: detectors smear input

Photons

EMcal: -4.5 < eta < 4.5

Tracking: -3.5 < eta < 3.5

eta = -3.5 - -2.5: sigma_p/p ~ 0.1% p+2.0% eta = -2.5 - -1: sigma_p/p ~ 0.05% p+1.0% eta = -1 - +1: sigma_p/p ~ 0.05% p+0.5

Charged hadrons+neutrons

Hcal is -3.5 < eta < 3.5

eta = -3.5 - -1: sigma_E ~ sqrt(pow(0.06*E, 2) + pow (0.45,2) *E eta = -1 - 1: sigma_E ~ sqrt(pow(0.07*E, 2) + pow(0.85, 2)*E)

200

100

0

У_{true}

0.4 0.5 0.6 0.7 0.8 0.9

0.04

0.03

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.3 0.2

0.1

0.1 0.2 0.3

У_{true}

16