

ECCE Calorimeter Design

ECCE

EICUG Meeting August 4, 2021

Friederike Bock, ORNL for the ECCE consortium

Main Ideas behind Calorimeter Concept CCCC

Electromagnetic Calorimeters:

- Full coverage with optimum resolution $\eta < 1.1$
- High granularity in forward & backward direction
- Cost reduction through re-use of existing calorimeters where appropriate

Hadronic Calorimeters:

- ${\circ}\,$ Good energy & position resolution $\eta>1.2$
- High granularity in forward direction
- Maximum η coverage
- Cost reduction through re-use of existing calorimeters where appropriate

First version of default setup fully implemented in Geant4!

F. Bock (ORNL)

- Re-use existing outer sPHENIX & STAR forward HCal
- Re-use existing PHENIX
 Shalik ECal w/ upgraded readout
- Build new homogenous ECals
- Build new inner HCal in barrel ECal support frame
- Build new longitudinally separated forward HCal

- Re-use existing outer sPHENIX & STAR forward HCal
- Re-use existing PHENIX Shalik ECal w/ upgraded readout
- Build new homogenous ECals
- Build new inner HCal in barrel ECal support frame
- Build new longitudinally separated forward HCal

e-going outer HCAL EHCAL central h-going

- Re-use existing outer **SPHENIX & STAR** forward HCal

e-going outer HCAL FEM EHCAL central h-going

- Re-use existing outer **SPHENIX & STAR** forward HCal
- Re-use existing PHENIX Shalik ECal w/ upgraded readout

e-going outer HCAL FEM EHCAL EEMC BEGA central h-going

- Re-use existing outer **SPHENIX & STAR** forward HCal
- Re-use existing PHENIX Shalik ECal w/ upgraded readout
- Build new homogenous **ECals**

e-going outer HCAL FEM EHCAL inner HCAL EEMC EEGA central h-aoina

- Re-use existing outer **SPHENIX & STAR** forward HCal
- Re-use existing PHENIX Shalik ECal w/ upgraded readout
- Build new homogenous **FCals**
- Build new inner HCal in barrel ECal support frame

e-going outer HCAL FEM EHCAL inner HCAL EEMC central h-aoina

- Re-use existing outer **SPHENIX & STAR** forward HCal
- Re-use existing PHENIX Shalik ECal w/ upgraded readout
- Build new homogenous **FCals**
- Build new inner HCal in barrel ECal support frame
- Build new longitudinally separated forward HCal

Calorimeter setup: e-going

ECAL (EEMC): PbWO₄ calorimeter

- $2 \times 2 \times 18$ cm tower, partial re-use
- $-3.2 < \eta < -1.85$
- Alternative study: outer rings $4 \times 4 \times 40$ cm Sci-Glass towers

Interested Groups:

AANL, Charles U. Prague, CUA, FIU, IJCLab-Orsay, JMU, Lehigh U., MIT, UKY

Advanced mechanical design, cost & risk evaluation!

Advanced mechanical design, cost & risk evaluation!

Calorimeter setup: e-going

ECAL (EEMC): PbWO₄ calorimeter

- $2 \times 2 \times 18$ cm tower, partial re-use
- $-3.2 < \eta < -1.85$
- Alternative study: outer rings $4 \times 4 \times 40$ cm Sci-Glass towers

Interested Groups:

AANL, Charles U. Prague, CUA, FIU, IJCLab-Orsay, JMU, Lehigh U., MIT, UKY

HCAL (EHCAL):

- Re-use STAR-forward HCal w/ upgraded electronics
- 10 imes 10 imes 100 cm towers, $L \sim 7\lambda$
- read-out: 8 Si-PMs per WLS plate
- $-3.87 < \eta < 0.97$

Interested Groups: ORNL, Wayne State

e-going Calorimeter Performance

Pu-Kai Wang, IJCLab-Orsay

- Performance studies for EEMC (crystal/hybrid) & EHCAL with full G4 simulations
- Standalone simulations meet/exceed YR requirements & slightly outperform available test beam results

EEMC standalone

e-going Calorimeter Performance

Pu-Kai Wang, IJCLab-Orsay

- Performance studies for EEMC (crystal/hybrid) & EHCAL with full G4 simulations
- Standalone simulations meet/exceed YR requirements & slightly outperform available test beam results
- $\,\circ\,$ Addition of support structures & other detectors for further performance studies

e-going Calorimeter Performance

Pu-Kai Wang, IJCLab-Orsay

- Performance studies for EEMC (crystal/hybrid) & EHCAL with full G4 simulations
- Standalone simulations meet/exceed YR requirements & slightly outperform available test beam results
- Addition of support structures & other detectors for further performance studies

Calorimeter setup: central

E-Cal: Sci-Glass calorimeter

- $4 \times 4 \times 45.5$ cm partially projective towers
- $-1.74 < \eta < 1.31$
- iHCal in steel support frame
- Alternative: Re-use sPHENIX SPACAL EMC with upgraded read-out

Interested Groups: MIT, CUA, OSU

Mechanical design, cost & risk assessment ongoing!

Calorimeter setup: central

E-Cal: Sci-Glass calorimeter

- ${\small \bullet}~4\times4\times45.5$ cm partially projective towers
- $-1.74 < \eta < 1.31$
- iHCal in steel support frame
- Alternative: Re-use sPHENIX SPACAL EMC with upgraded read-out

outer HCAL

inner <u>HCAL</u>

CEMC

Interested Groups: MIT, CUA, OSU

Mechanical design, cost & risk assessment ongoing!

H-Cal: Fe-Scintilation-Tile Calorimeter

- Re-use sPHENIX outer HCal
- $-1.16 < \eta < 1.16$
- Read-out upgrade with new SiPMs

Interested Groups: Lehigh U., Rutgers U., ISU

F. Bock (ORNL)

BECAL: Sci-Glass homogeneous ECal

• Scintilation glass calorimeter with 45.5 cm deep towers

- \bullet Towers projective in η to (0, 0, 10) cm & tilted by 10° in φ
- Bore radius at 85 cm

Jational Laborator

Interested Groups: MIT, CUA, OSU

Nathaly Santiesteban, MIT

 \mathcal{L}

Central Calorimeter Performance

- Simultaneous performance studies for BECAL, inner & outer HCAL in full G4 simulations for two different configurations
- Standalone performance surpasses YR requirements
- Optimizations for realistic noise, digitization & calibration on-going
- Adding support structures & other detectors to study performance degradation/ improvement
 - ightarrow tight spatial constraints need to check $arphi/\eta$ dependence carefully

Central Calorimeter Performance

- Simultaneous performance studies for BECAL, inner & outer HCAL in **full G4 simulations for two different configurations**
- Standalone performance surpasses YR requirements
- Optimizations for realistic noise, digitization & calibration on-going
- Adding support structures & other detectors to study performance degradation/ improvement
 - \rightarrow tight spatial constraints need to check φ/η dependence carefully

ECAL (FEMC): Pb-Scint. Shashlik calorimeter

- PHENIX re-use
- 5.5 imes 5.5 imes 37.5 cm towers, $L \sim 18 X_0$
- read-out upgrade 9 Si-PMs,
- $1.24 < \eta < 3.5$

Interested Groups: ORNL, Rutgers U.

Mechanical design, cost & risk evaluation ongoing!

EHCAL

ECAL (FEMC): Pb-Scint. Shashlik calorimeter

- PHENIX re-use
- 5.5 imes 5.5 imes 37.5 cm towers, $L \sim 18 X_0$
- read-out upgrade 9 Si-PMs,
- 1.24 $< \eta <$ 3.5

Interested Groups: ORNL, Rutgers U.

HCAL (LFHCAL):

- longitudinally separated Fe-Sci tile calorimeter
- 5 imes 5 imes 140 cm towers $L \sim$ 7 λ
- read out: 7 SiPMs per tower, 10 layers each
- 1.11 $<\eta<$ 3.47

Interested Groups: ORNL, WSU, Sejong U., KNU, Yonsei U., PNU

Mechanical design, cost & risk evaluation ongoing!

EHCAL

Clusterization performance

- Cluster finding and association to single particle challenging task in forward/backward direction opportunity for Al
- Software developments crucial implemented different algorithms:
 - Fun4All default w/o thresholds (V1)
 - simple splitting w/ thresholds (V3)

- areas based: square (N×N) or circle (CN)
- splitting including diagonals w/ thr. (MA)

Different cluster finding efficiencies, resolutions & other properties

Clusterization performance

- Cluster finding and association to single particle challenging task in forward/backward direction opportunity for Al
- Software developments crucial implemented different algorithms:
 - Fun4All default w/o thresholds (V1)
 - simple splitting w/ thresholds (V3)

- areas based: square (N \times N) or circle (CN)
- splitting including diagonals w/ thr. (MA)

h-going Calorimeter Performance

- 3D-cluster reconstruction could allow significantly better shower separation
- Potential for meson/baryon separation using shower depth/width

LFHCAL standalone

 $\mathcal{L}((+))$

h-going Calorimeter Performance

- **3D-cluster reconstruction** could allow significantly better shower separation
- Potential for meson/baryon separation using shower depth/width
- Adding support structures & other detectors to study performance degradation/ improvement

LFHCAL w/ FEMC infront

 $\mathcal{L}((+))$

Inlay with Dual Readout Calorimeter

Interested Groups: ORNL, Sejong U., KNU, Yonsei U., PNU

Upgrade/Alternative in h-going Direction

- exact design still to be chosen depending on production costs \rightarrow replacing parts of FEMC and LFHCAL
- advantage of small constant term in resolution
- simultaneous readout of electro-magnetic and hadronic response

F. Bock (ORNL)

Summary

Performance Evaluations:

- ECCE calorimetry systems meet or exceed YR performance over full coverage area
- Extensive performance studies using high statistics full G4 simulations

Mechanical Integration, Costing and Optimizations:

- Experienced team of mechanical engineers from multiple institutes
- Optimizations of installation rails, cable channels & cooling at edges to minimize gaps in η coverage
- Extensive integration studies for maximizing coverage whilst allowing for realistic services & support structures for inner detectors
- Activities, cost, schedule & risks continue to be collected/refined/studied by experts working with experienced ECCE project management support team
- On track for realization for CD4-a with high-performance & feasible design General:
 - Very large, international, inclusive consortia of institutes with extensive calorimeter experience

Participate in this esential process!

There is still a lot of work ahead of us!

Contact us:

Yongsun Kim - kimy@cern.ch Friederike Bock - friederike.bock@cern.ch

Mattermost channels:

Fun4All-Calorimeters ECCE-Calorimeters

• Meetings:

ECCE detector WG-meetings

Detailed Locations

	<i>z/r</i> [m]/	depth [cm]	radial coverage [cm]	pseudorapidity	tower size [cm]
ECAL e-going					
PbW0 ₄	z = -1.9	18 (40)	14.95 < r < 66	$-3.2 < \eta < -1.85$	2×2
hybrid:					
PbW0 ₄	z = -1.9	18 (60)	14.95 < r < 51	$-3.2 < \eta < -2$	2×2
Sci-Glas	z = -1.9	40 (60)	51 < r < 66	$-2 < \eta < -1.85$	4×4
HCAL e-going					
STAR reuse	z = -3.6	100	15 < r < 260	$-3.87 < \eta < 0.97$	10×10
ECAL central					
Sci-Glas	r = 0.85	45.5(60)	-251 < z < 169	$-1.74 < \eta < -1.31$	4×4
sPHENIX (w/ iHCal) reuse	r = 0.92	20(50)	-251 < z < 169	$-1.69 < \eta < -1.28$	4×4
HCAL central					
sPHENIX reuse	r=(1.8,1.94)	87(73)	-320 < z < 320	$-1.16 < \eta < 1.16$	10×10?
ECAL h-going					
PHENIX/ALICE reuse	z = 2.9	37.5	20 < r < 183	$1.24 < \eta < 3.50$	5×5 (6×6)
HCAL h-going					
LHCAL	z = 3.5	140	20 < r < 262	$1.11 < \eta < 3.47$	5×5
DRCALO					
(inlay)	<i>z</i> = 3.0	150	20 < r < 50	$2.70 < \eta < 3.70$	0.3×0.3

$\bigcap \Lambda V$ National Laboratory

η -dependent Resolution Studies

1 / VE (GeV)

16/17

ECCE Calorimeter

What's next?

Mechanical Integration and Optimizations:

- ${\scriptstyle \circ}$ Evaluate with engineers construction routines, cable routing, support structures
- Integrate realistic support structures from inner detectors in G4 simulations
- Minimize gaps for installation rails, cable channels & cooling at edges of calorimeter to minimize gaps in η coverage

Realistic Calibrations:

- Evaluate from existing test-beam campaigns (i.e. STAR fwd. E/HCAL & sPHENIX E/HCAL) realistic noise levels for electronics
- Cross check digitization cut-off with latest generation off electronics
- Implement timing response for all calorimeters
- Prepare necessary test-beam campaigns for next year

Performance Evaluations:

- Continue performance evaluations for relevant physics observables in full detector setup
- Integrate calorimeter response in PID algorithms