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1 Introduction

This note summarizes work done during the summer of 2021 by the SMU ATHENA group. The
work is focused on the identification of charm-quark-initiated jets (“charm jets”) using tracking
and calorimetry information. The scattering of an electron by a proton is simulated using the
charged-current (CC) deep-inelastic scattering (DIS) process at a center-of-mass energy of

√
s =

105 GeV. Charm jets are initiated by various processes, notably the process s̄ + W− → c̄. This
process can be used to probe the intrinsic strange quark content (“strageness”) of the proton.

A range of approaches are used to identify charm jets, including generic displaced track counting,
particle-identification-based (PID-based) approaches utilizing kaons and electrons, and multivari-
ate approaches to combine such information.

2 EIC and ATHENA Simulations

The collisions at the EIC are simulated using Pythia8 configured with the high-acceptance beam
spot model. The proton’s parton distribution function (PDF) is set to CT18NNLO. This results
in a beam spot size consistent with the EIC Yellow Report configuration for the collider, with a
transverse beam profile that is O(10) ¯m in size and a longitudinal beam profile that is O(1) cm in
size. The “forward” direction points in the direction of the hadron beam and defines the positive z
axis. The positive x axis points into the center of the EIC collider ring and the positive y direction
points straight up. The common coordinate system for collisions is cylindrical and employs pT, η
(pseudorapidity), and φ azimuthal angle about the z axis to describe particle kinematics.

The forward direction of the ATHENA detector is designed for high-acceptance and efficiency
for the hadronic components of the collisions (which tend to travel in the direction of the hadron
beam), the barrel is designed to reconstruct both hadronic and leptonic components (including
good missing energy reconstruction), and the backward region is designed to accept and recon-
struct well the scattered beam lepton.

The ATHENA detector is modeled in one of two ways. Unless otherwise specified, the pri-
mary modeling is performed using a fast simulation framework (Delphes) configured using the
delphes_EIC project, specifically the delphes_card_allsilicon_3T.tcl model. This implements
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a tracking volume with acceptance, resolution, and efficiency consistent with a proposed all-
silicon tracker design. The calorimeter consists of two systems, an electromagnetic calorimeter
(ECal) and a hadronic calorimeter (HCal) with energy resolution consistent with the EIC Yellow
Report targets. In addition, the response of dedicated PID systems (a backward mRICH, a barrel
DIRC, and a forward dual RICH) for kaons and pions is simulated using efficiency maps based on
the EIC User Group PID group parameterization developed for the EIC Yellow Report.

Post-Delphes work is conducted on Delphes objects using the OLeAA project
(https://github.com/stephensekula/OLeAA). This results in compact ROOT files that can
be used in Python- or ROOT-based analyses.

3 Event Selection

We select e-p collisions that meet the following criteria:

• The event missing transverse energy Emiss
T exceeds 10 GeV;

• The event contains at least one R=1 anti-kT jet that has pT > 5 GeV and |η| < 3.0.

The efficiency with which we select any CC DIS event (CC DIS events containing a true charm
jet) is 59% (53%). The Emiss

T requirement is 86% (78%) efficient on all (charm) events. The jet
requirement, relative to the Emiss

T requirement, is 68% (68%) efficient.

4 Charm and Light Jets

Charm and light jets are produced by different processes at the EIC and this results in general
differences between the two super-classes. Light jets consist of those jets initiated by a range of
quarks, including up and down, strange, and also by the gluon. Charm jets (and bottom-quark-
initiated jets) are generally distinguished by the presence of decays interior to the jet structure that
are displaced from the origin of the jet (the interaction point). For example, charm hadrons have
lifetimes that range from cτcharm ≈ 200 − 500 ¯m. Such hadrons are generally further Lorentz-
boosted by the collider and the subsequent jet hadronization process, resulting in decay lengths
ranging from hundreds to thousands of microns.

Other particles, such as K0
s and Λ, readily produced in strange and lighter parton jets, have sig-

nificant lifetimes and can fake the displaced decays associated with charm jets. These long-lived
light hadron decays are simulated as part of the background.
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Charm jets in this simulation are produced primarily by the target process, s̄ + W− → c̄. This
relies on converting sea strange quarks to charm quarks. In addition, since kinetic energy from
the interaction is lost to the mass of the charm quark (which is about 4-5 times heavier than the
strange quark), one expects the spectrum of the charm jets to be softer than the light jet spectrum.
Light jets are primarily initiated from processes like u +W− → d (e.g. converting a valence quark)
or by interactions with the light sea; combined with the fact that such quarks have low masses and
are sourced from partons that carry a significant fraction of the proton’s momentum, this leads to
a harder light-jet spectrum. This is observed in simulation.

5 Displaced Tracks in Jets

Displaced decay vertices will also necessarily lead to tracks that are displaced from the origin
of the jet. A simple approach to identifying heavy flavor jets with displaced hadronic decays
is to count significantly displaced tracks and place a minimum requirement on the number and
quality of such tracks. The magnitude of the distance of closest approach to the interaction point,
computed in either the transverse plane, the longitudinal direction, or by combining all three
dimensions, contains information about the presence of such decays.

The variables used in this approach to tagging heavy flavor jets are as follows:

• d0: the magnitude of the distance of closest approach in the transverse plane between a track
and the IP;
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• z0: the magnitude of the distance of closest approach in the longitudinal direction between
a track and the IP;

• IP2D: the significance of the track displacement in the transverse plane, defined as IP2D ≡
d0/σd0 ;

• IP3D: the significance of the track displacement in all three dimensions, using r0 =
√

d2
0 + z2

0
and thus IP3D ≡ r0/σr0 ;

• sIP3D: the signed 3-D impact parameter significance, where the sign multiplying IP3D is
determined from the dot product ~j ·~r0 where ~j is a unit vector pointing parallel to the axis
of the jet containing the track and~r0 is a vector pointing from the IP to the point of closest
approach on the track.

We show in the next few figures the distributions of these quantities.
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Given the higher mass of the charm quark, we would also expect a higher multiplicity of final-
state particles in charm jets. We focus on the multiplicity of tracks with significant displacement
(sIP3D > 3.0) and compare the multiplicity (up to four such tracks) in u/d/g jets, strange jets, and
charm jets. Indeed, we see that charm jets overwhelmingly tend to produce more significantly
displaced tracks.
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5.1 Cut-based displaced track tagging

A simple approach to displaced track tagging in jets is taken by combining the following pieces of
information for the four leading (by pT) tracks in each jet:

• The track pT;
• The track IP2D.

The counting of significantly displaced tracks is done by determining how many tracks in a jet
pass the minimum criteria on each of these quantities. We optimize the selection on these hyper-
parameters by scanning over combinations of criteria and identifying the one that minimizes the
relative error on a final predicted charm jet yield in 100 fb−1 of data, σcharm/ncharm. The results of
this optimization are as follows:

• The track pT ≥ 0.5;
• The track IP2D ≥ 3.0;
• The number of such displaced tracks ntrk ≥ 3.

As a baseline, we adopt the above requirements to define a cut-based “CharmIPXDTagger” de-
termination. The output of this algorithm is 1.0 (true) if the above criteria are met. Based on the
selection of jets using this definition of CharmIPXDTagger, we find the charm (light) jet efficiency
to be 17% (0.86%). The expected yield of charm (light) jets in 100 fb−1 is 3.6× 103 (7.3× 103).
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5.2 Multivariate-based displaced track tagging [BROKEN/IGNORE]

NOTE: the neural network trained for this section was flawed due to an error in the training
process. It preferentially wound up selecting jets with no tracks as a result. This section should
be ignored for now. The cut-based definition is used for the rest of this note.

An estimate of the level of improvement we might expect from a full multivariate tagging method
(incorporating potential correlations between variables) is obtained by combining displacemnt-
sensitive variables in a neural network. The network is a simple feed-forward multi-layer percep-
tron (MLP). The leading four tracks (based on pT) are selected as sources of inputs for the MLP.
For each track, the IP2D, IP3D, and sIP3D variables are selected. This yields 12 total inputs to the
MLP.

The MLP is architected with a single hidden layer of 36 nodes. The activation function for the hid-
den layer nodes is the rectified linear unit (ReLU). All inputs are transformed to have a consistent
range between [0, 1]. A dedicated Monte Carlo sample is generated to perform the training, inde-
pendent of any sample used henceforth to state performance results. A total of 10,000 (100,000)
charm (light) jets are used in the training process, and 1000 epochs over the training sample are
used to optimize the neural network. A single output node yields a score between 0 (light jet) and
1 (charm jet).

Bias in the training is assessed by comparing the MLP output shape for charm and light jets be-
tween the training and the testing samples used in the training process. The testing sample con-
sistents of an independent set of jets equal in number to those used in the traininig sample. A
Kolmogorov-Smirnov test of the compatibility of the training and testing MLP shapes suggests
no significant evidence of over-training (e.g. the shape of the MLP in the testing sample can be
explained by statistical fluctuations in the shape of the MLP in the training sample).

The output of the MLP is shown for light-flavor (u/d/g), strange, and charm jets. This MLP
is henceforth referred to as the CharmIPXDTagger. A cut on the output at $>$0.58 is found to
optimally select charm jets over light jets. This optimization is determined by minimizing the sta-
tistical uncertainty on the final yield of charm-tagged jets, in a target luminosity of 100 fb−1, if we
assume a perfect subtraction of all contaminating light jets by some future background subtraction
method.
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Based on the selection of jets using CharmIPXDTagger, we find the charm (light) jet efficiency to
be 17% (0.86%). The expected yield of charm (light) jets in 100 fb−1 is 3.6× 103 (7.3× 103).

6 Kaon Tagging

Kaons are strongly associated with charm hadron decay. While not, by themselves, a unique in-
dicator (e.g. strange jets can also produce kaons), particle identification of kaons combined with
displaced track approaches at the single-track level should provide the basis for flavor discrimi-
nation of jets.

The rate at which charm hadrons are expected to produce at least one kaon is large. For example
D± (D0) mesons decay inclusively to K±+ X about 25% (55%) of the time. In addition, the electric
charge of the kaon should carry flavor information. For example, in the process e−p+ → c̄ + X
the sign of the beam lepton (e−) is required, by the electroweak interaction, to be the same as the
final-state charm quark (assuming s̄ +W− → c̄ dominates this production). The c̄ quark will form
either D− or D̄0 mesons during hadronization. In turn, these will dominantly produce K+ mesons
in decays to kaons. Therefore, the sign of the beam lepton and the sign of the final-state kaon will
be correlated, providing handles on assessing jet flavor.

We here study kinematic, displacement, and charge information and combine that into a “K-
Tagger” approach that relies solely on identified kaons to assess jet flavor.
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6.1 Kaon PID in ATHENA

Particle identification systems are implemented in Delphes as identification maps encoding the
probability that a track with truth identity H0 will be identified as PID hypothesis H1. For now,
these systems only encode the probability of identifying charged kaons, pions, and protons. The
information used to build these maps comes from the EICUG PID Group and was input for the
EIC Yellow Report. Full simulation of realistic PID systems, including an mRICH in the backward
direction (−3.5 < η < −1.0), a barrel DIRC (−1.0 < η < 1.0), and a forward-direction (1.0 < η <
3.5) dual RICH composed of aerogel (low-momentum PID) and C2F6 (high-momentum PID), is in
progress in the collaboration.

The performance of the mRICH, barrel DIRC, and dRICH components in Delphes is illustrated
below in a set of efficiency plots for true kaons and true pions.
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6.1.1 Kaon Features in Charm, Strange, and u/d/g Jets
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The most promising variables for selection kaons originating from charm jets are the leading kaon
IP3D, pT, sIP3D, and relative momentum (e.g. pK

T /pJ
T). For other variables, especially for sub-

leading kaons, the shapes of these distributions are increasingly or wholly similar among all jet
types.

We note that while the IP2D of the sub-leading kaon looks promising as a discriminating variable,
when processed through our current optimization process our overall K-Tagger efficiency drops
significantly. We recognize that our current approach - combining a series of independent one-
dimensional cuts - is perhaps too naive to combine the leading and sub-leading kaon in a single
approach. A more advanced approach later will be appropriate.

6.1.2 Defining the K-Tagger Using Independently Optimized Selection Criteria

We make the very naive assumption that the variables in our set are independent. We then sepa-
rately optimize selection criteria on each variable, without imposing selections on the others. THe
optimization goal is defined by the use of the Punzi figure-of-merit,

FOMPunzi =
εs

n
2 +
√

Nb
.

We recognize this is not the best approach, but use this as a baseline starting point. Here, εs is the
efficiency of a selection on signal objects (charm jets), Nb is the of background objects (light jets)
selected by the choice, and n is a hyperparameter that corresponds to the target level of separation
(e.g. n = 3 roughly implies a goal of 3-sigma separation of signal and background).
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The selection criteria ensures that the optimal location is chosen such that a minimal amount of
background is chosen consistent with a goal of a certain level of background-signal separation
in the post-selection sample. Note that the leading kaon electric charge, q, requires no formal
optimization since a selection can clearly be made for charm jets with a postive charge in both the
primary and secondary simulation data sets (q > 0).

Based on this approach we obtain the following constraints:

• The cut on theleading kaon sIP3D > 2.4

• The leading kaon pT = [ 0.071,0.78] GeV.

• The leading kaon IP2D > 4.0

• The leading kaon IP3D > -0.010

Combined with the requirement that q > 0 for the leading kaon, these selections are all imposed
(boolean “and” operation) and this is referred to as the “K-Tagger”.

6.1.3 K-Tagger Baseline Performance

When the above cuts are made to define the K-Tagger, the following percentages of charm jets with
kaons are able to be recovered from those missed by the existing CharmIPXDTagger alone. In the
following, “exclusively” tagged refers to jets identified by the K-Tagger but not the CharmIPXD-
tagger while “inclusively” refers to being tagged by the K-Tagger without regard to whether a jet
passes or fails the CHarmIPXDTagger.

• Inclusively KTagged charm jet efficiency: 6.86%

• Inclusively KTagged strange jet efficiency: 0.0444%

• Inclusively KTagged up/down/gluon jet efficiency: 0.0187%

• Exclusively KTagged charm jet efficiency: 5.30%

• Exclusively KTagged strange jet efficiency: 0.0397%

• Exclusively KTagged up/down/gluon jet efficiency: 0.0155%

7 Electron Tagging

Electrons are defined as tracks matched to jets that have EEM/ECALO > 0.991. The fast simulation
does not correctly model the ratio of energy deposited in the electromagnetic (EM) and hadronic
(HAD) calorimeters, so we correct it using single-particle (electron or pion) simulations from a
DD4HEP GEANT4-based ATHENA simulation. Knowing the true identify of a track, we allocate
its calorimeter energy to either system using a Monte Carlo approach where we probabilistically
set the energy-sharing fraction (based on how true electrons and pions distribute their energy)
and store that along with the track. The requirement on the electromagnetic energy fraction was
determined using a Punzi FOM optimization of the selection on this ratio, optimally separating
real electrons and pions independent of whether or not they arose from a specific jet type.
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We pursue a similar strategy in the electron tagging as we did in the kaon tagging. We investigated
leading electron (by pT) and sub-leading electron variables, including the pT, the ratio of the pT to
the parent jet pT, and the track displacment in 2- and 3-dimensions. We find that the sub-leading
electron carries not useful potential for classification of jets using these variables, and that the pT
ratio, IP2D, and sIP3D of the leading electron are the most promising for flavor-tagging and jet
classification.
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Our optimization proceeds as with the kaons and we find the following selection criteria:

• pe
T/pJ

T < 0.54
• IP2D > 3.2
• sIP3D > 3.4

We summarize the efficiency of these selections in the next section, where we compare the inclu-
sive and exclusive tagging efficiencies for the algorithms.

8 Summary of Tagging Performance Estimates

We combine the displace track counting, kaon-based, and electron-based tagging approaches. We
first tabulate the exclusive and inclusive efficiencies of each of these approaches.

Inclusive Charm
Efficiency

Exclusive Charm
Efficiency

Inclusive Light
Efficiency

Exclusive Light
Efficiency

CharmIPXDTagger 17.3 14.6 0.861 0.814
KTagger 6.86 4.69 0.0187 0.0141
ETagger 6.17 3.98 0.426 0.377

Based on the current work, the total tagging efficiency naively taking the logical “OR” of all three
algorithms would be 23.2%.
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