

Outline

- Introduction & History
- STAR Forward Detectors
- Tracking Concepts
- Track Finding and Fitting
- Performance
- Conclusions
- HW Questions

Detector Technology through the years

1906: Geiger Counter, H. Geiger, E. Rutherford 1910: Cloud Chamber, C.T.R. Wilson 1912: Tip Counter, H. Geiger 1928: Geiger-Müller Counter, W. Müller 1929: Coincidence Method, W. Bothe 1930: Emulsion, M. Blau 1940-1950: Scintillator, Photomultiplier 1952: Bubble Chamber, D. Glaser 1962: Spark Chamber 1968: Multi Wire Proportional Chamber, C. Charpak 1970es: Silicon era

[lecture notes Erika Garutti]

Discovery of the π

Discovery of the pion Nuclear emulsion technique [Powell 1947; Nobel prize 1950]

 Pion decays to a muon and an unseen particle, hence the sharp bend to the track

The Neutrino Event

- Observation of a neutrino in a hydrogen bubble chamber - 1970
- Neutrino strikes a proton, converts into a muon
- It looks like 3 particles coming from nothing!
- Tracks were drawn by hand on photos of every event

Particle Detectors have come a long way

Slice of the CMS detector

Modern detectors are fully electronic with several special purpose sub-detectors

The STAR Forward Upgrade

Coverage: 2.5 $< \eta <$ 4.0

Forward Tracking System

Silicon microstrip sensorssmall-Strip Thin Gap Chambers

Forward Calorimetry System

Hadronic Calorimeter Electromagnetic Calorimeter

STAR Forward Rapidity Physics Program

Measurements planned for 2021+ with the STAR forward upgrade

→Address important topics in hot & cold QCD

Forward-	rapidity	2.5< <i>η</i> <4
----------	----------	--------------------------

pp, pA

Beam:

500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- TMD measurements at high x transversity → tensor charge
- Improve statistical precision for Sivers through Drell-Yan
- Δg(x, Q²) at low x through Dijets
- Gluon PDFs for nuclei
- > R_{pA} for direct photons & DY
- Test of Saturation predictions through di-hadrons, g-Jets

Au+Au

Beam:

200 GeV: Au+Au

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to h~4
- Longitudinal decorrelation up to h~4
- Global Lambda polarization
- → Test for strong rapidity dependence

Forward Tracking System

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Forward Calorimeter System

Detector	Resolution p+p and p+A	Resolution A+A
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{E}$
HCal	$\sim 50\%/\sqrt{E} + 10\%$	_

Lets review the technology used for the tracking detectors

STAR Forward Silicon Tracker

- Acceptance:
- $0 < \phi < 2\pi$, $2.5 < \eta < 4.0$
- 12 wedge modules / disk
- APV25 frontend readout chips
- Flexible hybrid

STAR Forward Silicon Tracker - Prototype Module

Small-Strip Thin Gap Chambers (sTGC)

Detector:

- Based on ATLAS sTGC design
- 4 layers in total
 - 4 modules/layer
 - 2 chambers/module
- Pentagon shape formed from identical modules
- Shandong University : sTGC R&D and production
- Position resolution: ~100 μ m

Wire: Au-plated tungsten wire Ø 50μm, 1.8mm pitch Copper strip: 3.2mm pitch Height of one layer: 5.8mm Gas: 55% n-pentane+45%CO2 HV: 2900V

Requires dedicated gas system

Forward Tracking System

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

<u>Silicon mini-strip disks ×3</u>	Small-Strip Thin Gap Chamber
oLocation : z = 90, 140, 187 cm from	(sTGC) $\times 4$
interaction point	oLocation : z = 270, 300, 330, 360 cm
OBuild on and utilize STAR experience	from interaction point
of successful Intermediate Silicon	 Significant reduction in cost
Tracker(IST) detector	(compared to all silicon)
ominimal material (≤1% X0/layer) in the	 Prototype at BNL, testing in STAR
acceptance	during 2019 run

Basics of Tracking

- 1. Find track candidates
 - Input: unsorted hits from detectors
 - Output: Possible tracks and their associated hits
- 2. Resolve ambiguities / conflicts
 - Input: Possible tracks (maybe with shared hits)
 - Output: Set of "BEST" tracks
 - Considerations :
 - Can one hit be used by several tracks?
 - If so, how many shared hits are allowed?
 - If conflicts exists, what metric defines the "BEST" track?

3. Fit track model

- Input: Set of tracks and their associated hits
- Output: Momentum and charge information
- Procedure : Fit points (+ Primary Vertex?) to track model
 - Track Model in uniform \vec{B} = Ideal helix
 - Track Model in non-uniform \vec{B} = helix modified by magnetic field variations (including zero field)

Figure 28: $e^-e^+ \rightarrow \Lambda \bar{\Lambda}$

Track Finding Procedure

Naïve approach : make all possible connections

 \odot Very slow due to combinatorial blow up

 Still need to <u>distinguish real track</u> segments from combinatorial

Cellular Automation

 OUse simple "criteria" to build up longer segments of hits

 Build small segments, then grow them according to additional criteria

Overy performant & easily parallelized

Tracking in the STAR TPC (with iTPC upgrade)

• Thousands of tracks per event (central collisions)

Conway's Game of Life

A "glider" gun (Wikipedia)

Cellular Automation

- System is in discrete states
- "Update" state based on simple rules
- Simple initial conditions and simple rules → complex emergent behavior
- But how can we use this for particle tracking?

Apply Cellular Automation to Tracking?

- How to apply Cellular Automation?
- How to express states of the system?
- How do we "update" to grow our tracks?

Apply Cellular Automation to Tracking?

- First look at "hit pairs"
- Hits on neighboring detector planes
- How to distinguish "real" pairs (from a single particle track) from "fake" pairs?
- Can we apply simple criteria for this?

Criteria for Finding Track Segments Two-Segment Criteria : DeltaRho

Criteria DeltaRho :

8/12/21

Criteria for Finding Track Segments Two-Segment Criteria : StraightTrackRatio

Criteria StraightTrackRatio :

$$\frac{\rho_A * z_B}{\rho_B * z_A}$$

Strong discriminator for forward tracks

Apply Cellular Automation to Tracking?

- Next look at "hit triplets"
- Hits on neighboring detector planes connected by one hit
- How to distinguish "real" pairs (from a single particle track) from "fake" pairs?
- Can we apply simple criteria for this?

Criteria for Finding Track Segments Three-Segment Criteria : 2DAngle

Criteria 2DAngle :

 $\Delta x_1 = x_B - x_A$ $\Delta y_1 = y_B - y_A$ $\Delta x_2 = x_C - x_B$ $\Delta y_2 = y_C - y_B$ $u = (\Delta x_1)^2 + (\Delta y_1)^2$ $v = (\Delta x_2)^2 + (\Delta y_2)^2$

Hits at GEN level precision ($\sigma_x = \sigma_y = 0$)

Criteria for Finding Track Segments Three-Segment Criteria : ChangeRZRatio

Criteria ChangeRZRatio :

Cleaning the Cellular Automata output

- After Cellular automata, we have all possible tracks
- Use Hopfield Neural Network to find "Best Tracks"

Hopfield Recurrent Artificial Neural Network

- Can process "corrupt" data, reconstructing true data
- Recurrent network exhibits temporal behavior "memory"
- For tracking, ideal for finding **unique tracks**
- It is generally a good assumption that real tracks do not share any hits

Cleaning the Cellular Automata output

- After Cellular automata, we have all possible tracks
- Use Hopfield Neural Network to find "Best Tracks"

Hopfield Recurrent Artificial Neural Network

- Can process "corrupt" data, reconstructing true data
- Recurrent network exhibits temporal behavior "memory"
- For tracking, ideal for finding **unique tracks**
- It is generally a good assumption that real tracks do not share any hits

Goal of Track Finding

- 1. Efficiency
 - Find every track that exists criteria cannot be too specific or inflexible
- 2. Purity
 - Don't find tracks that shouldn't be there
 - Caused by mismatching hits from one track with hits from another (previous slides)
 - Ghost hits!

sTGC Ghost hits

sTGC ghost hits

- sTGC is basically a sandwich of two 1 dimensional detectors
- Ambiguity exists when multiple hits occur **Ghost Hit**
 - Leads to "ghost" hits
 - Major problem for high multiplicities

Real Hit

Reduce Ghost hits with Diagonal strips

Reduce Ghost hits with Diagonal strips

Split strip

Diagonal strip

Significant reduction of ghost hits

Challenges: Magnetic Field in Forward Region

Forward Tracking

Unique Challenges:

 Combination of detector technologies: Silicon & sTGC
 Changing magnetic field
 Large hit density

Track finding:

 Cellular Automata

 Track Fitting:

 CENERAL (a multi-avecar

 GENFIT2 (a multi-experiment tracking framework)

Tracking Efficiency

Evaluate performance under ideal conditions

- Track finding efficiency (perfect 4/4 correct hits) is $\approx 98\%$
- Track finding efficiency (3/4 or more correct hits) is \approx 99.5%
- **o** Full material effects

• Real STAR B-field

GENERATOR ("GEN" or "MC" hits):

- \circ 1 μ^+ / Event
- $\circ \ \ 2.45 < |\eta| < 4.05$
- $\circ 0.2 < p_T < 5 \, GeV/c$
- B Field : **REAL** (StarMagField)
- Primary Vertex distribution $\mu = (0, 0, 0)$, $\sigma = (0.05, 0.05, 5)$ cm.
- CA Track finding uses sTGC only, fast & generic

Tracking Algorithm

Track Finding

Cellular Automata based
 Uses hits from sTGC detector

Track Fitting procedure

- 1. Fit primary vertex + sTGC hits
- 2. Swim along track, find hits in Si planes
- 3. Refit with primary vertex + Si + sTGC

Track Fitting and performance

- 1. Fit with sTGC and primary vertex
- 2. Project tracks to Si disks and search for hits along track
- 3. Refit tracks with PV + sTGC + Si

Primary Vertex $\sigma_{XY} = 500 \ \mu m$

- Beamline constraint should provide $\sigma_{XY} = 500 \ \mu m$ or better

Track Fitting and performance

- 1. Fit with sTGC and primary vertex
- 2. Project tracks to Si disks and search for hits along track
- 3. Refit tracks with PV + sTGC + Si

Primary Vertex $\sigma_{XY} = 500 \ \mu m$

- Beamline constraint should provide $\sigma_{XY} = 500 \ \mu m$ or better
- Combine projected R-position @ silicon with very high-precision phi-measurement

Example single track fit

Primary Vertex

• Hits in Silicon Detector

8/12/21

Hits in **sTGC** Detector

Daniel Brandenburg | BN

GENFIT2 Display

Track Fitting and performance

- 1. Fit with sTGC and primary vertex
- 2. Project tracks to Si disks and search for hits along track
- 3. Refit tracks with PV + sTGC + Si

Primary Vertex $\sigma_{XY} = 500 \ \mu m$

- Beamline constraint should provide $\sigma_{XY} = 500 \ \mu m$ or better
- Refit with Si provides significantly improved momentum resolution (x2) + charge identification (especially at higher pT)

Understanding the track fitting

- Study track <u>FITTING</u> only → assume **PERFECT** track finding, i.e.
- Why do this: Study track fitting independent of track finding

• If we have perfect information of track hits, how well can we determine track momentum and charge?

MC Closure test: verify the tracking procedure

MC Closure to prove that the tracking code "works"

- Generate tracks / propagate with GEANT
 ➤ Physics_OFF = Multiple scattering, hadronic interactions, etc. turned OFF
- 2. Use GEANT hits, blur position by $\sigma_{XY} = 1 \ \mu m$ (could be anything)
- 3. Assign hit covariance matrix according to σ_{XY}
- 4. Fit tracks using GENFIT2 implementation

GEN Level (Physics_off) $\sigma_{XY} = 0.1 \mu m$

Physics_off = leave hit in detector, otherwise no interaction with material

GEN Level (Physics_off) $\sigma_{XY} = 1 \mu m$

44

GEN level $\pm 1\mu$ m (Physics ON)

No p_T dependence, dominated by interactions

High Multiplicity Tracking

- Naïve CA implementation is <u>very</u> slow for high-mult events.
 - Scales with combinatorial pairs
 - Problem will be worse with ghost hits from sTGC in high-mult events
- CA is easily parallelizable / separable
 - Simplest approach: split hits from each station into slices in ϕ
 - Reduces combinatorial pairs
 - May reduce efficiency for low $p_{\rm T}$ tracks
 - Multiple iterations to recover hard-to-find track candidates

Tracking Performance at higher multiplicities

Track Finding Efficiency

Tracking Performance:

- ✓ Split/Parallelize high multiplicity events speedup ~x1000
- Track finding shows healthy behavior trending towards higher multiplicity
- Detailed studies will be needed with ghost hits and diagonal strips
- Preliminary study: momentum resolution peripheral Au+Au < 30%, meeting goals for physics in AA
 - \circ Note: resolution depends on η , p_T and multiplicity

Track Finding Efficiency vs. Multiplicity

Conclusions

- Detector technology as been crucial for advancing our experiment reach and physical understanding
- STAR Forward upgrade uses modern tracking technology to achieve tracking in challenging situations : non-uniform B-field, various detector technologies...
- Tracking requires cutting edge mathematical algorithms for finding "real" tracks in the sea of background

Homework

- Read about particle detectors:
 - <u>https://www2.physics.ox.ac.uk/sites/default/files/Detectors.pdf</u>
- Read about track finding using machine learning:
 - https://arxiv.org/pdf/1904.06778.pdf
- Derive the relation between track curvature and the track momentum in a given B-field
- Write a ROOT/python code to compute/plot the number of ghost hits vs. real hits for an sTGC like detector. Can you come up with a mathematical expression for this?
 - If you break the area into 4 smaller independent detectors, how would that change the number of ghost hits?