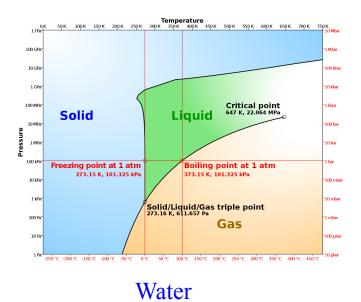

The Muon Telescope Detector at STAR

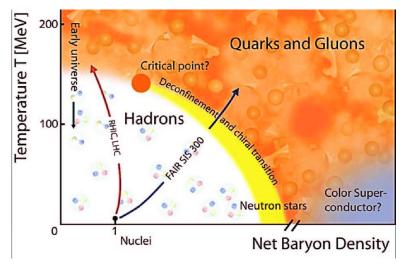
Rongrong Ma (BNL) 08/16/2021

Lecture for Nuclear Physics Traineeship

What is the QGP?

• **Quark-gluon plasma**: a state of QCD matter, consisting of asymptotically *free moving quarks and gluons* which are ordinarily confined within nucleons by color confinement.




https://www.bnl.gov/riken/research/QGP.php

Believed to have existed at Early Universe

Phase transition

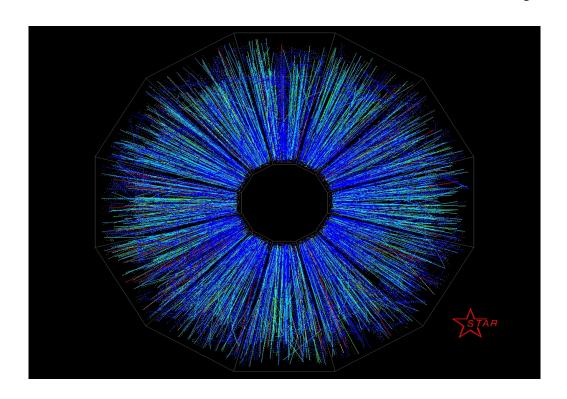
- Lattice-QCD predicts a phase transition from confined hadrons to the QGP
 - $\varepsilon_c \sim 1 \text{ GeV/fm}^3$; $T_c \sim 165 \text{ MeV}$


QCD matter

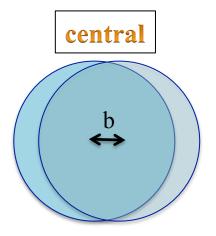
How to create the QGP in a lab?

• Heavy-ion collisions

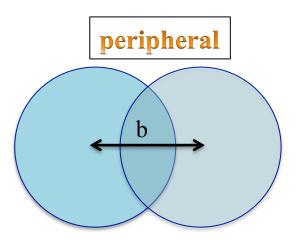
- T.D. Lee, 1974: We should investigate phenomena by distributing high energy or high nucleon density over a relatively large volume


RHIC: Au+Au

LHC: Pb+Pb

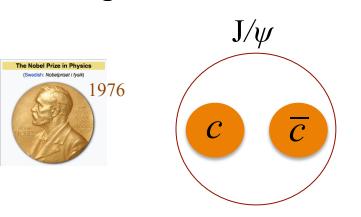


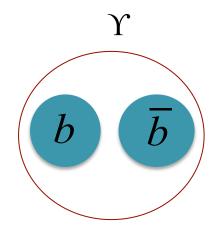
A real collision recorded by STAR



What is Centrality?

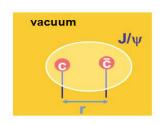
• Used to quantify the collision geometry/impact parameter

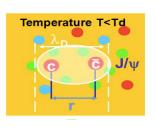

- Small impact parameter
- Large N_{coll}
- Larger/hotter medium

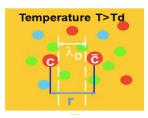

- Large impact parameter
- Small N_{coll}
- Smaller/no medium

What is a quarkonium?

• A quarkonium is a meson made up of a pair of heavy quark and its anti-quark.


Discovered in 1974 at both SLAC (Burton Richter) and BNL (Samuel Ting)




Discovered in 1977 at Fermilab (Leon Lederman)

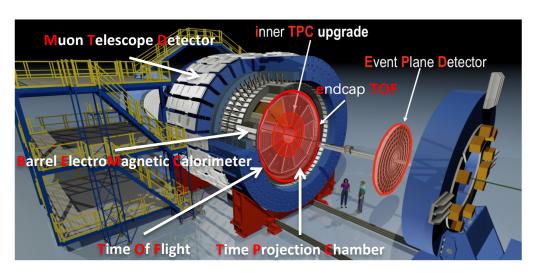
Use quarkonia to study the QGP

- QGP lifetime $\sim 10^{-21}$ s
- Early creation: experience entire evolution of quark-gluon plasma
- Evidence of deconfinement: quark-antiquark potential color-screened by surrounding partons \rightarrow (static) dissociation/suppression

$$r_{q\overline{q}} \sim 1 / E_{binding} > r_D \sim 1 / T$$
T. Matsui and H. Satz

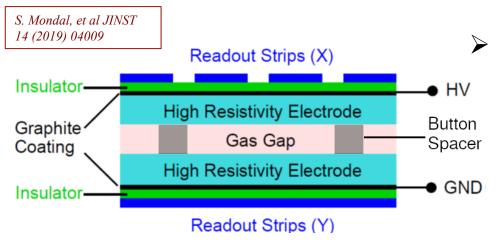
1. Matsui and H. Satz PLB 178 (1986) 416

How to detect a J/ψ ?


- Mass = $3.0969 \text{ GeV}/c^2 = 5.52\text{e-}27 \text{ kg}$
- Mean lifetime = 7.2e-12 s

- Decay into electron and muon pairs, which can be measured in detectors and used to reconstruct the J/ψ
- Both channels have been used to measure J/ψ , and we will focus on the muon channel in this lecture

$$J/\psi \rightarrow \mu^+ + \mu^-$$


STAR @ RHIC

- Heavy-ion collisions happen at the center of STAR
- Cylindrical shape; magnet sits at a radius ~ 3 m

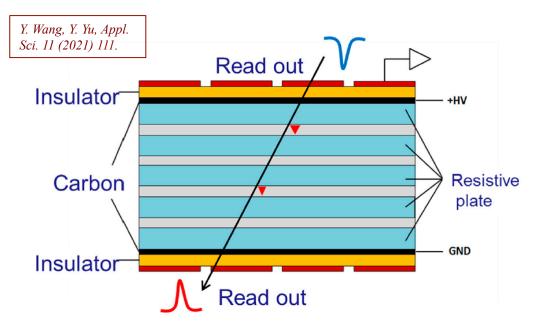
- Sub-detectors
 - Heavy Flavor Tracker
 - Time Projection Chamber
 - Time-Of-Flight detector
 - Barrel ElectroMagneticCalorimeter
 - Muon Telescope Detector
 - **–** ...

Resistive Plate Chambers (RPC)

Working principle:

- a traversing particle ionizes the gas atoms
- knocked out electrons drift in the external electric field and ionize more atoms
- moving electrons induce signals on readout strips

Timing resolution


$$\sigma(t) = \frac{1.28}{(\alpha - \eta) \times v}$$

- $\alpha=1/\lambda$, λ is mean distance between ionizing collisions
- v: drift velocity

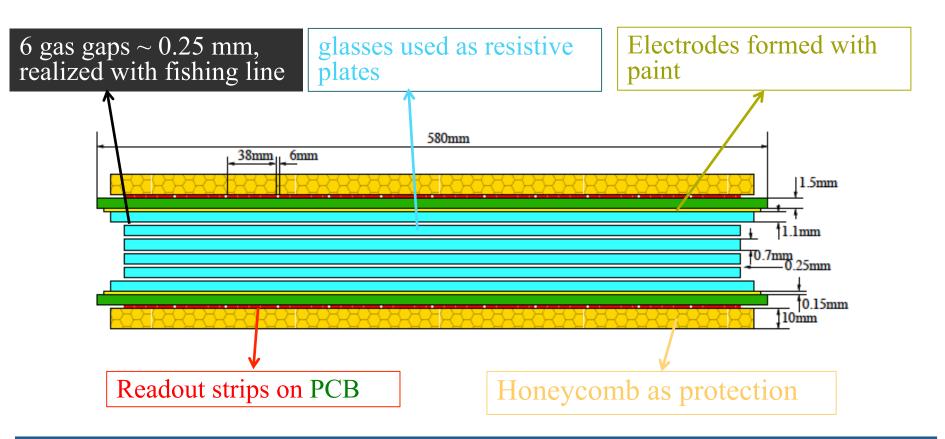
- ❖ To improve resolution, one can decrease gap width, which however leads to lower efficiency
 - → More gaps

W. Riegler, et al, NIM A 500 (2003) 144

Multigap Resistive Plate Chambers (MRPC)

- Ionization can happen in multiple gaps, and readout strips pick up signals from all gaps
- Improve timing resolution and efficiency
- Resistive plates prevent cross-talk between gaps

High rate, easy construction, large area, cost effective


Muon Telescope Detector

- MTD consists of 122 trays
- Each tray is made of a MRPC, electronics and supporting structure

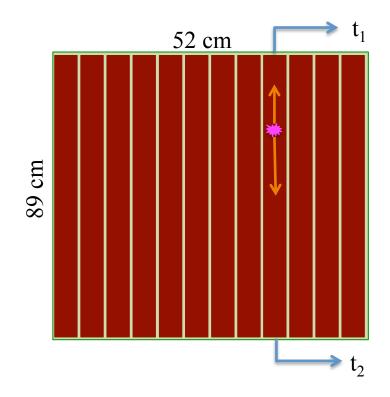
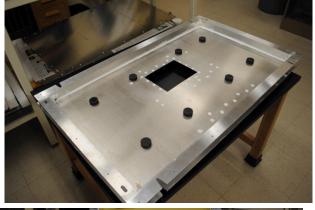


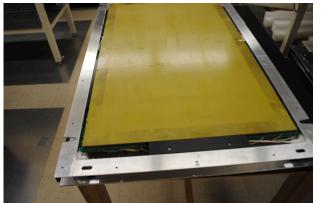
Figure 33. An exploded view of an MTD tray.

MRPC in MTD

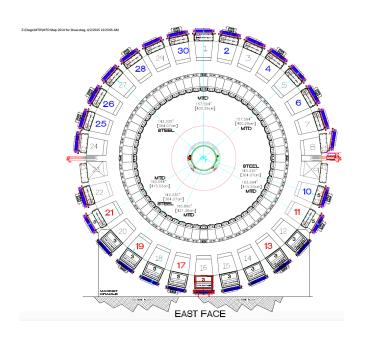

Double-ended readout strips

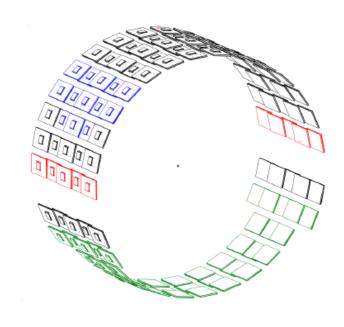


- Each tray has 12 strips
- Each strip is 38 mm wide, with a 6 mm gap in between
- Double-ended readout to measure hit time and position

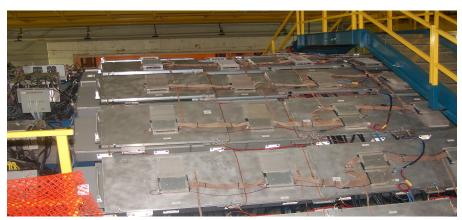

$$t = \frac{t_2 + t_1}{2} \qquad z = \frac{t_2 - t_1}{2} \times v_{signal}$$

Tray assembly





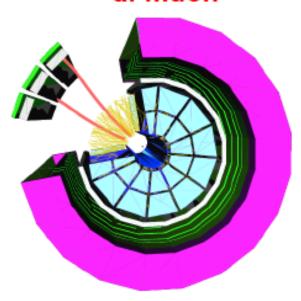
MTD geometry



- Located outside of the STAR magnet (~5 interaction lengths), acting as an absorber
- 122 trays on 28 backlegs; 1439 readout strips

HW: what is the interaction length?

MTD installation



Event trigger

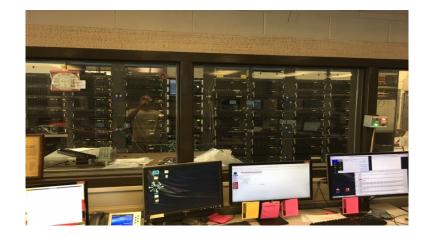
- A trigger is used to select (rare) events of interest during online data-taking
 - Increase signal counts for limited data-taking bandwidth
 - Save disk space
 - Facilitate offline analysis
- For example, a J/ $\psi \rightarrow \mu^+ + \mu^-$ is produced in every ~10k Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV
 - -1 measured J/ ψ in every 3M events

MTD dimuon trigger

di-muon

- Process: $J/\psi \rightarrow \mu^+ + \mu^-$
- Trigger condition: two signals in the MTD based on timing
- Rejection power: 1 to 30
 - Still dominated by background
- Triggered events are saved in dedicated files for later processing

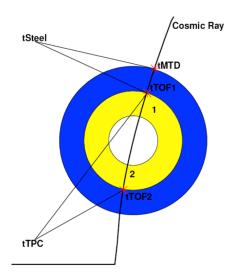
MTD operation


- Gas mixture: 95% Freon + 4.5% Isobutane + 0.5% SF₆
 - Isobutane and SF₆ are used to control ionization process
- High voltage: +6300V, -6300V
- 24/7 on-call experts

Go from electronic signal to data

Data-taking

- Usually in the first half of a year
- 24/7 4-person shift to take data and monitor the status of detectors (reduced during pandemic)
- Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week


Go from electronic signal to data

Data-taking

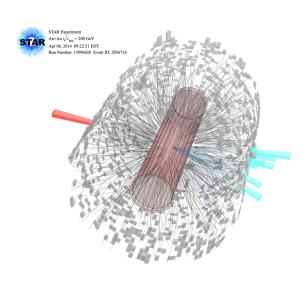
- Usually in the first half of a year
- 24/7 4-person shift to take data and monitor the status of detectors
- Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week

Calibration

- Convert electronics signal to physical quantities (TDC → time)
- Detector alignment
- T0 calibration

Go from electronic signal to data

Data-taking

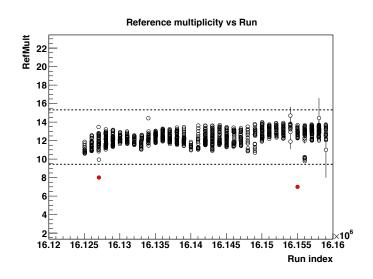

- Usually in the first half of a year
- 24/7 4-person shift to take data and monitor the status of detectors
- Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week

Calibration

- Convert electronics signal to physical quantities (TDC)
- Detector alignment
- T0 calibration

Data production

- Vertex: position where the collision happens
- Tracks: momentum, position, charge ...
- Hits: energy, position, timing ...



Data analysis

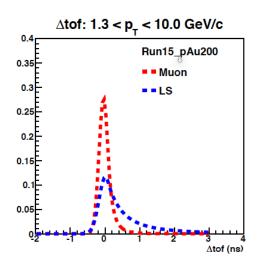
- Quality assurance
- Signal extraction
- Detector effect correction
- Physics results

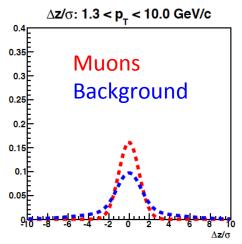
Quality assurance

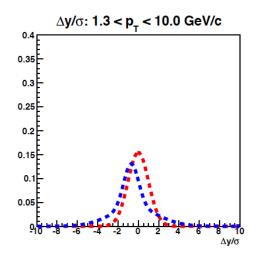
- To make sure the detector performance is stable across all the runs
 - A run is a period of time (30-45 min) during data taking

> Typical procedure

- Plot physics quantity of interest against run indices
 - Left: number of reconstructed charged particles
- Project the figure to y-axis and obtain the distribution of the quantity. Fit the distribution with a Gaussian distribution, and define exclusion zone, e.g. 4σ
- 3) Check records to find out the cause of the abnormal behavior.
 - If understood, these runs could be used in principle
- 4) Runs in exclusion zone are labeled "bad", and removed for further analysis

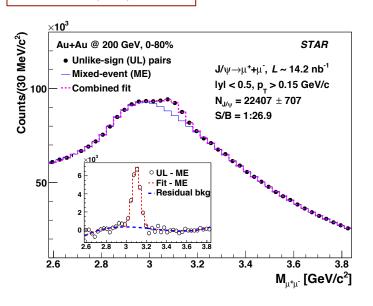

Signal extraction


- Process of interest: $J/\psi \rightarrow \mu^{+} + \mu^{-}$
- Signal reconstruction
 - Identify muons
 - Calculate invariant mass, i.e. rest mass (3.0969 GeV/ c^2 for J/ ψ), of the dimuon pairs. It is conserved during particle decay.
 - Fit the invariant mass distribution to obtain J/ψ counts


HW: how to calculate the invariant mass from decay daughters' kinematics?

Muon identification

- PID: cut on measured quantities related to particle characteristics, e.g. mass, interaction with material, etc.
- Remaining contamination in the selected sample



Signal extraction

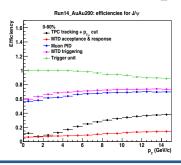
STAR, PLB 797 (2019) 134917

- Black circles: invariant mass of $\mu^+\mu^-$ pairs (unlike-sign, UL)
- Background
 - Random combination of μ⁺μ⁻ pairs: combine candidate μ⁺ and μ⁻ from different collisions (ME, blue histogram)
 - Other physical sources of residual background
- Fit UL-ME distribution with a Gaussian (J/ψ) plus polynomial (res. bkg.) function
- J/ψ counts: integral of the Gaussian function

22k J/ ψ in ~2B triggered events

Corrections for detector effects

- Detector effects
 - Acceptance: a detector covers limited phase space
 - Efficiency: probability to measure a given particle in the acceptance
 - Resolution: the accuracy of the measured quantities, such as a particle's momentum or energy
- All these need to be corrected for, in order to obtain physics results, which should not depend the specific experiment measuring it.

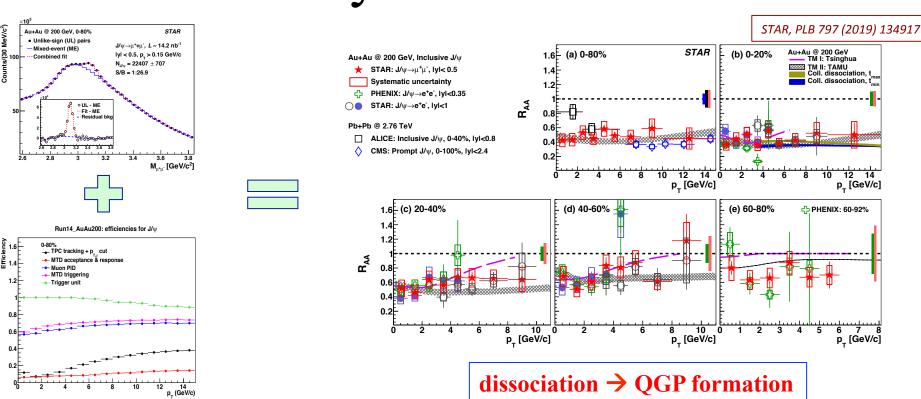

Corrections for detector effects

• How to estimate detector effects?

- 1. Simulate physics process with Monte Carlo generators, e.g. PYTHIA
- 2. Pass simulated signal through detector simulations, e.g. GEANT, and embed it into real data

- 3. Reconstruct embedded events the same way as real data
- 4. Evaluate detector effects:

$$\varepsilon = \frac{\text{output}}{\text{input}}$$



Nuclear Modification Factor (R_{AA})

Used to quantify modification to J/ψ production by the QGP

$$R_{AA} = \frac{\sigma_{inel}}{\left\langle N_{coll} \right\rangle} \frac{d^2 N_{AA} / dy dp_T}{d^2 \sigma_{pp} / dy dp_T} \begin{cases} R_{AA} < 1: \text{ suppression} \\ R_{AA} = 1: \text{ no (net) medium} \\ \text{effects} \\ R_{AA} > 1: \text{ enhancement} \end{cases}$$

Physics results

Summary

- One of the main goals of heavy-ion physics is to study the properties of the QGP created in these collisions.
 - QGP: consisting of deconfined quarks and gluons
- Use J/ ψ as a probe to study the QGP \rightarrow dissociation/suppression expected
- Measure $J/\psi \rightarrow \mu^+ + \mu^-$ process with the MTD: dimuon trigger and muon identification
 - MTD is based on MRPC technology
- Suppression of J/ψ yields is observed in central Au+Au collisions, compared to pp collisions
- More differential measurements with better precision can further shed light on QGP properties.