New All-Silicon Tracker Studies in the Forward Region

Rey Cruz-Torres ATHENA Tracking Meeting 08/17/2021

Goal

Goal

How does the detector performance change when we change the cone angle?

Support Cone Angle

Momentum Resolution dependence on Cone Angle

Momentum Resolution dependence on Cone Angle

Nominal angle: 36.5° New angle ~ 34°

'Spike' in the transition region gets bigger for smaller cone angles

Can we use the extra-space between the all-silicon tracker ($z_{max} = 121$ cm) and the dRICH ($z_{min} = 155$ cm)?

Why would we want to make the tracker longer?

Slide by E. Sichtermann

The basics can be captured by straightforward considerations. Imagine a view along the beam and a helical track model inside a solenoidal field. Then,

$$p_{\rm T} \left[{
m GeV}
ight] = 0.3B \left[T
ight] R \left[m
ight]$$

 $s = R - R \cos rac{\phi}{2} \approx R rac{\phi^2}{8} \qquad \phi = rac{L}{R}$

Hence,

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} = \frac{\Delta R}{R} = \frac{\Delta \phi}{\phi} \approx \frac{\Delta s}{L^2} \cdot \frac{8p_{\rm T}}{B}$$

In other words, a good (transverse) momentum resolution requires:

- a large path length L (scales as L^2)
- a large magnetic field (scales as B)
- good Sagitta measurement.

 $\Delta s = \frac{\Delta_{r\phi}}{8} \sqrt{\frac{720}{N+5}}$ (Glückstern, 1963)

Note, however, that multiple scattering through the material of the disks matters.

Extended all-si tracker momentum resolution

- * First disk kept at the same position
- * Last disk moved from 121 to 145 cm
- * Remaining disks distributed equidistantly in z

Extended all-si tracker momentum resolution

- * First disk kept at the same position
- * Last disk moved from 121 to 145 cm
- * Remaining disks distributed equidistantly in z

Summary

☐ As cone angle becomes smaller, momentum resolution degrades more in the transition region between barrel and the disks

 \Box For $\theta_C = 34^{\circ}$ the momentum resolution degrades by ~ 50% (with respect to nominal) in $1.11 < \eta < 1.16$ (consistent otherwise)

 \Box Extending the all-silicon tracker from z = 121 cm to z = 145 cm improves the high- η momentum resolution from ~ a few % (lower momentum end) to ~ 10% (higher momentum end).

☐ This improved performance is consistent with the all-silicon tracker + GEM (behind RICH) configuration.

Only considered momentum resolution in these studies. Other performance quantities (e.g. efficiencies) need to be checked as well.