All-Silicon Tracker + GEMs ("baseline 1") Performance Studies

Rey Cruz-Torres ATHENA Tracking Meeting 09/07/2021

- 1. Nominal configuration
- 2. Variations:
 - i. (BARREL) Complementing tracker with MPGDs
 - ii. (BARREL) Using ITS-3 technology for Sagitta layers
 - iii. (DISKS) longer detector

Setup

Momentum resolutions

DCA resolutions

Angular Resolutions @vtx

- 1. Nominal configuration
- 2. Variations:
 - i. (BARREL) Complementing tracker with MPGDs
 - ii. (BARREL) Using ITS-3 technology for Sagitta layers
 - iii. (DISKS) longer detector

Complementing the all-si tracker in the barrel region

Variant #1:

All-silicon tracker + GEM outside the DIRC

Variant #2:

Outermost two barrel layers replaced with a GEM, and a second GEM added outside the DIRC

All-si tracker material budget (X/X0):

- Vertexing layers: 0.05%
- Barrel Layers: 0.55%
- **–** Disks: 0.24%

GEM Material Budget Effect

all-si + DIRC + GEM (R = 92 cm)

all-si outer two layers replaced with GEM (X/X0=0.7%) + DIRC + GEM (R = 92 cm)

all-si outer two layers replaced with GEM (X/X0=2.4%) + DIRC + GEM (R = 92 cm)

- 1. Nominal configuration
- 2. Variations:
 - i. (BARREL) Complementing tracker with MPGDs
 - ii. (BARREL) Using ITS-3 technology for Sagitta layers
 - iii. (DISKS) longer detector

Detector diagram

The middle layers are not much longer in z than the vertexing layers. Can we use the ultra thin (0.05 % X0) bent-silicon technology there? What do we gain?

Momentum resolution impact

Placement of barrel middle layers

Placement of barrel middle layers

14

Momentum resolution impact

- 1. Nominal configuration
- 2. Variations:
 - i. (BARREL) Complementing tracker with MPGDs
 - ii. (BARREL) Using ITS-3 technology for Sagitta layers

iii. (DISKS) longer detector

Extended all-si tracker momentum resolution

- * First disk kept at the same position
- * Last disk moved from 121 to 145 cm
- * Remaining disks distributed equidistantly in z

Extended all-si tracker momentum resolution

Summary

Benchmark figures presented for "baseline 1"

Better performance in the barrel region replacing outer two barrel layers with MPGD and using second MPGD behind DIRC

Momentum resolution significantly enhanced (~50%) if the ITS3 ultra-thin (0.05%) bent silicon technology is used for the middle (Sagitta) barrel layers.

The radius (and thus the length in z) can be reduced significantly (from $r_s \approx 22 \text{ cm}$ down to $r_s \approx 13 \text{ cm}$) while still achieving a momentum resolution better than those obtained with the baseline configuration over the entire kinematical range studied.

Don't know yet the cost impact from these changes.

- C Extending the all-silicon tracker from z = 121 cm to z = 145 cm improves the high- η momentum resolution from ~ a few % (lower momentum end) to ~ 10% (higher momentum end).
- This improved performance is consistent with the all-silicon tracker + GEM (behind RICH) configuration.
- Only considered momentum resolution in these studies. Other performance quantities (e.g. efficiencies) need to be checked as well.