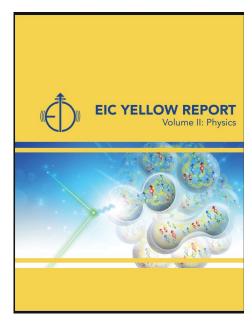
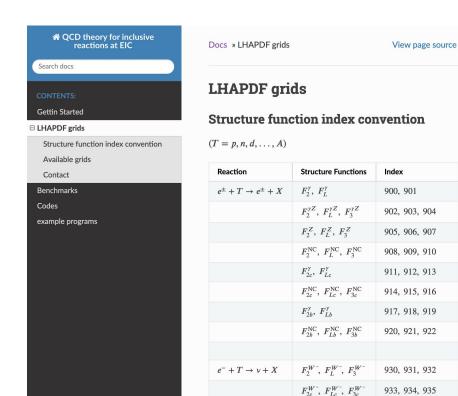

Theory tools

Nobuo Sato


Arxiv for DIS structure functions


https://github.com/JeffersonLab/txgrids

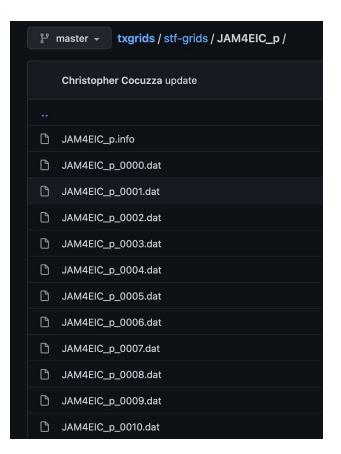
In collaboration with NNPDF, CJ, CT,

JAM, ...

Available grids

Only those rows with lhapdf name is actually available

Group	Target Structure Functions		Theory	$\textbf{Cuts} \ (in \ GeV^2)$		
CI	p	$F_{2,L,3}^{ ext{NC}}, F_{2,L,3}^{W^-}$				
	d	$F_{2,L,3}^{ m NC}, F_{2,L,3}^{W^-}$				
СТ	p	$F_{2,L,3}^{ ext{NC}}, F_{2,L,3}^{W^-}$				
	d	$F_{2,L,3}^{ m NC}, F_{2,L,3}^{W^-}$				
JAM	p	$F_{2,L,3}^{ m NC}$	NLO(ZMFVS)	$Q^2 > 1.69, W^2 > 10$		
	p	$F_{2,L,3}^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		
	d	$F_{2,L,3}^{ m NC}, F_{2,L,3}^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		
	³ He	$F_{2,L,3}^{ m NC}, F_{2,L,3}^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		
	p	$g_1^{\text{NC}}, g_1^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		
	d	$g_1^{\text{NC}}, g_1^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		
	³ He	$g_1^{\text{NC}}, g_1^{W^-}$	NLO(ZMFVS)	$Q^2 > 1.69, \ W^2 > 10$		


Structure functions following PDG convention

 $F_{2b}^{W^-}$, $F_{Lb}^{W^-}$, $F_{3b}^{W^-}$

936, 937, 938

Structure functions NNPDF31Jo_as_0118_SF F_2 F_L GeV^2 NNPDF31_nnlo_pch_as_0118_SF 0.25 0.20 -5.0 0.15 0.10 0.05 0.00 10^{-3} 10^{-1} 10^{0} 10^{-4} 10^{-3} 10^{-4} 10^{-2} 10^{-2} 10^{-1} 10^{0} 2.00 $10.0~{\rm GeV^2}$ 0.25 -0.20 -0.15 0.10 0.50 0.05 0.00 10^{-4} 10^{-3} 10^{-3} 10^{-1} 10^{-2} 10^{-1} 10^{-4} 10^{-2} 2.00 $\begin{array}{c} 1.75 \\ 1.50 \\ 0.001 \\ 1.25 \\ 1.00 \\ 0.75 \end{array}$ 0.25 0.20 0.15 0.10 -0.50 0.05 -0.00 10^{-2} 10^{-4} 10^{-3} 10^{-2} 10^{-1} xx

MC errors sets from JAM & NNPDF

□ example programs

```
example programs

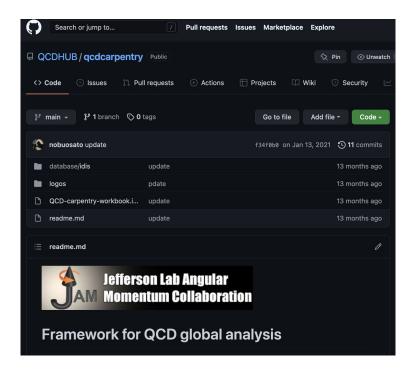
main00.py
Gloals
Code
main01.py
main02.py
```

main00.py

Gloals

ullet compute total cross section in ep reaction

Code


```
#!/usr/bin/env python
import sys.os
sys.path.append(os.path.dirname( os.path.dirname(os.path.abspath(__file__) ) ) )
import numpy as np
from theory.tools import save, load
from theory.idis import IDIS
def get_tot_xsec(tabname,rs=140.7,Q2min=1.0,W2min=10.0,neval=100000):
   def veto(x,v,02,W2):
       if W2 < W2min : return 0
       elif 02 < 02min : return 0
       else
                        : return 1
    data={}
    data['tabname'] = tabname
    data['iset']
    data['iF2']
                   = 908
    data['iFL']
                   = 909
    data['iF3']
   data['sign']
                   = 1 #--electron=1 positron=-1
    data['veto']
    idis=IDIS(**data)
    data['neval'] = neval
    data['rs'] = rs
    data['iw'] = 0
    data['units'] = 'fb'
    data['mode'] = 'tot'
   val,err,Q = idis.get cross section(**data)
```

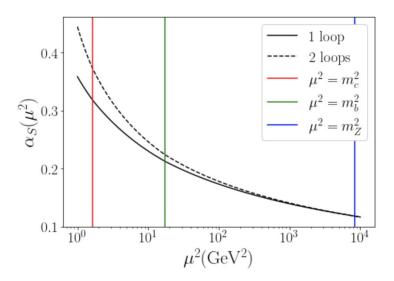
Get state of the art theory calculation for DIS observables

Use of Vegas integration -> weighted DIS events

QCD carpentry

With lecture notes (link)

Minimalistic version of JAM machinery


Outline Lecture 4 Lecture 1 Bayesian inference Motivations Maximum likelihood QCD carpentry setup MC methods Solving QCD's beta function JAM history Machine learning Lecture 2 Mellin transforms Solving DGLAP Modeling input scale PDFs Lecture 3 DIS theory World DIS data The chi2 function Global analysis

Framework for QCD global analysis

Author: Nobuo Sato (Jefferson Lab - Theory)

```
import sys,os,time
import numpy as np
import pandas as pd
import copy
import threading
#--matplotlib
import matplotlib
matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
matplotlib.rc('text',usetex=True)
import pylab as py
from matplotlib.lines import Line2D
#--scipv
from scipy.integrate import fixed_quad
from scipy.integrate import quad
from scipy.special import gamma
#--mpmath
from mpmath import fp
#--from scipy
from scipy.optimize import minimize.leastsq
```


$$\frac{\partial}{\partial \ln \mu^2} f_{j/H}(\xi, \mu) = \sum_{j'} \int_{\xi}^1 \frac{dz}{z} P_{jj'}(z, g) f_{j'/H}(\xi/z, \mu)$$

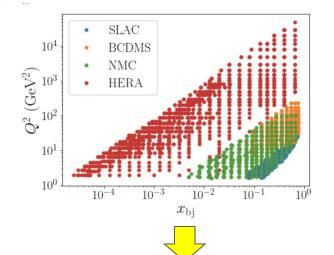
All in one jupyter notebook!

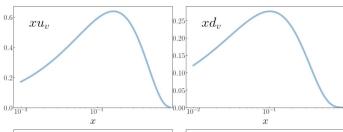
Global analysis for dummies

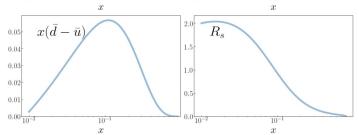
Loss function

Computation of observables

Solving evolution equations


PDF modeling


$$\chi^{2}(\boldsymbol{a}) = \sum_{i,e} \left(\frac{d_{i,e} - \sum_{k} r_{e}^{k} \beta_{i,e}^{k} - T_{i,e}(\boldsymbol{a})/N_{e}}{\alpha_{i,e}} \right)^{2} + \sum_{k} \left(r_{e}^{k} \right)^{2} + \left(\frac{1 - N_{e}}{\delta N_{e}} \right)^{2}$$


$$F_{i}^{p}(x_{\text{bj}}, Q^{2}) = \sum_{q} e_{q}^{2} \int_{x_{\text{bj}}}^{1} \frac{d\xi}{\xi} f_{q/p}(\xi, \mu^{2}) C_{q,i} \left(\frac{x_{\text{bj}}}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{S}(\mu^{2}) \right) + (q \to g)$$

$$\frac{\partial}{\partial \ln \mu^{2}} f_{j/H}(\xi, \mu) = \sum_{j'} \int_{\xi}^{1} \frac{dz}{z} P_{jj'}(z, g) f_{j'/H}(\xi/z, \mu)$$

$$\Gamma(\xi; \boldsymbol{a}) = \mathcal{M} \frac{\xi^{\alpha} (1 - \xi)^{\beta} (1 + \gamma \sqrt{\xi} + \delta \xi)}{\int_{0}^{1} d\xi \, \xi^{\alpha+1} (1 - \xi)^{\beta} (1 + \gamma \sqrt{\xi} + \delta \xi)}$$

summary sum rules chi2 per exp parameters

JAM FITTER

var	value
count	52
elapsed time(mins)	0.34
shifts	2
npts	1503
chi2	1551.96
rchi2	51.64
nchi2	7.73
chi2tot	1611.33
dchi2(iter)	0.53
dchi2(local)	-0.00

summary sum rules chi2 per exp parameters

reaction: unpol DIS filters: Q2>1.612900 filters: W2>10.000000 reaction: unpol DIS

idx	col	obs	tar	npts	chi2	chi2/npts	rchi2	nchi2
10010	SLAC	F2	р	222.00	237.83	1.07	0.00	4.66
10016	BCDMS	F2	р	348.00	398.05	1.14	22.87	0.09
10020	NMC	F2	р	274.00	490.12	1.79	7.80	2.96
10026	HERA	sig_r	р	402.00	693.30	1.72	176.66	0.00
10027	HERA	sig_r	р	75.00	84.94	1.13	8.00	0.00
10028	HERA	sig_r	р	259.00	252.89	0.98	8.26	0.00
10029	HERA	sig_r	р	209.00	224.26	1.07	7.60	0.00
10030	HERA	sig_r	р	159.00	275.81	1.73	22.00	0.00
10031	HERA	sig_r	р	39.00	47.30	1.21	4.92	0.00
10032	HERA	sig_r	р	42.00	55.03	1.31	14.91	0.00
10011	SLAC	F2	d	231.00	200.65	0.87	0.00	6.66
10017	BCDMS	F2	d	254.00	288.39	1.14	12.08	0.40
10021	NMC	F2d/F2p	d/p	174.00	168.16	0.97	2.49	0.00