
ATHENA SIDIS Analysis Software

https://github.com/c-dilks/largex-eic

C. Dilks

Developers

- Duane Byer
- Connor Pecar

1

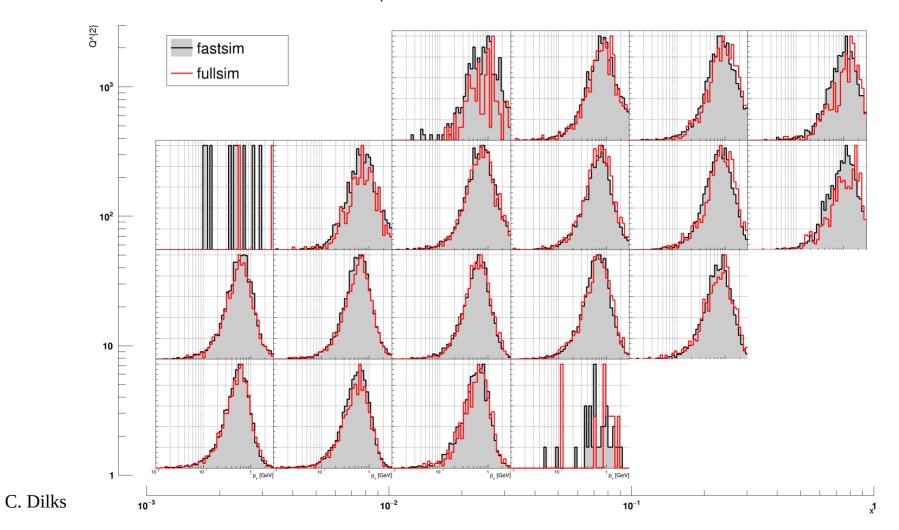
Software Design Principles adopted from ATHENA Software Group

Modularity

- One "task" = one "module"
- SIDIS SW itself is a module, reading output from fast/fullsim
- Adaptable to upstream data structure changes → Analysis sub-classes
- Adaptable to downstream needs → Edit existing or add new data structures

Continuous Integration

- Support development / testing
- Automate generation of benchmark plots
- Track evolution of any plot as development proceeds


Containerization

- Singularity / Docker image available, including dependencies such as Delphes and ROOT
- Entry point for new contributors
- Support CI

Version control

Trunk-based development → pull requests and code reviews

Example benchmark plot: pion p_T for fast and full simulations, in (x,Q^2) bins

Issues / Lessons / Ideas

Fast simulation storage

- Could not use S3 to store Delphes files (performance limits + S3 is primarily for full simulations)
- Workarounds:
 - For high statistics: JLab storage limited accessibility
 - Run Delphes on S3 hepmc files adequate for low stats
 - Considered other short-term cloud storage options, but JLab storage was sufficient for the proposal

Automated access to S3

- MinIO Client and TFile::Open provides access, but a wrapper would be useful
- We developed a set of wrapper scripts for SIDIS SW, where the user supplies:
 - Full simulation version (e.g., DeathValley-1.0), or which Delphes card to use
 - Beam energy (e.g., 18x275)
 - How much data (e.g., number of files per Q² minimum)
 - Decide whether to stream from S3 or download to local disk
- Such a wrapper would be dependent on Working Group needs → beyond scope of SW group
 - Similarities in data organization between Working Groups? → generalized wrapper could be developed
 - Maybe all we need is better documentation of what's available and how it was produced

Support for the Future

Upstream Integration: migrate to EICweb (gitlab)

1) Connect to upstream CI pipelines

- Example Scenario:
 - A change in detector design is being considered
 - Proposed change triggers ATHENA detector CI pipelines and benchmarks
 - SIDIS analysis SW pipeline could also be triggered, providing immediate feedback of the effect of the proposed design change

2) More modularization

- Adage "backend" data structure is general purpose → should be a separate module (repository)
- A new backend could make more use of POD structures, or add POD support to Adage

3) Generalization

- We don't have to limit ourselves to SIDIS
- Already we have (some) support for jets
- Support broader needs of the collaboration
- Name change, since "largex-eic" is historical

Contributions are welcome!

backup

Data Structures in SIDIS analysis SW

- <u>Simple Tree</u> flat TTree, useful for quick tests etc.
- Adage Analysis in a Directed Acyclic Graph Environment
 - Store data with arbitrary multi-dimensional binning and cuts
 - Store lambdas, executable by graph traversal high-order functions
 - → no need for nested for loops!
 - Prototype design, could use more testing and development
- It's fairly straightforward to add your own data structure
 - Existing data structures may not suit our future needs
 - Future development idea: data structure "plugins"