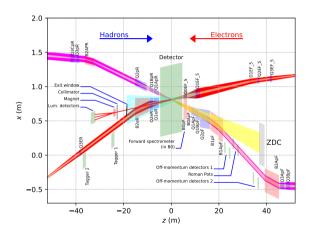
Magnetic field in Geant and DD4hep

Jaroslav Adam


BNL

September 20, 2021

EIC Working Group Meeting

Beam magnets in far-backward area

- Q1eR, Q2eR, B2AeR, B2BeR magnets are simulated in Geant luminosity framework and in DD4hep
- Input is electron beam generated with nominal vertex spread, angular divergence and momentum spread
- The beam is captured at the front of Q3eR after passing through fields of Q1eR, Q2eR, B2AeR, B2BeR
- Shape of the beam is compared to lattice results for the front of Q3eR
- Geant was found well compatible with lattice results
- DD4hep needed corrections to achieve the compatibility

Magnets location and fields

Name	z ₀ (m)	z ₁ (m)	<i>d</i> ₀ (mm)	<i>d</i> ₁ (mm)	B (T or T/m)	<i>x</i> ₀ (m)	x ₁ (m)	θ_y (mrad
Q1eR	-5.3	-7.1	96	111	13.3153	0	0	0
Q2eR	-7.6	-9	129	129	-12.0595	0	0	0
B2AeR	-9.61	-11.39	140	140	0.192	0	0	0
B2BeR	-11.685	-14.865	196	196	0.238	0	0	0
Q3eR	-37.7	-38.3	100	100		-0.46003	-0.47087	18.08

Table: Start and end position along z is z_0 and z_1 . Same convention is used for diameter d and position in x.

Layout in Geant and DD4hep

- Q1eR, Q2eR, B2AeR, B2BeR magnets are shown as cylinders
- Rectangular marker at the front of Q3eR captures the beam
- Separate vacuum volumes (even in surrounding vacuum) had to be defined in DD4hep and more precise field transport had to be set for correct beam transport

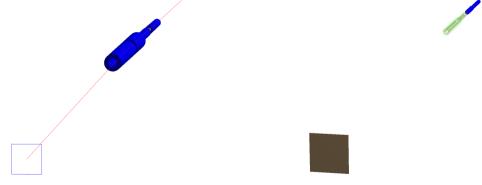


Figure: Geant layout and electron trajectory

Figure: DD4hep layout

Beam shape at Q3eR from Geant

	μ_{x} (mm)	μ_y (mm)	$3\sigma_x$ (mm)	$3\sigma_y$ (mm)
Lattice reference	0	0	10.19	0.41
Geant results	$\text{-}2.733 \pm 0.025$	$\text{-0.003} \pm 0.001$	10.247 ± 0.062	$\textbf{0.379} \pm \textbf{0.003}$

- Fit to beam position on the front of Q3eR
- Comparison to lattice calculation
- Slight offset in x vs. lattice
- Good agreement for beam width

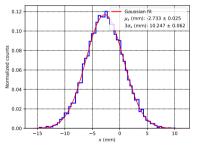
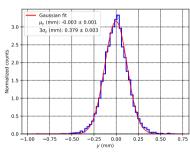
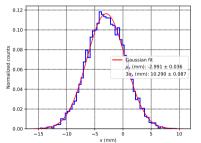
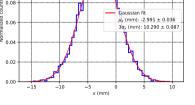


Figure: Beam along *x* in Geant


Figure: Beam along y in Geant

Beam shape at Q3eR from DD4hep

	μ_{x} (mm)	μ_{y} (mm)	$3\sigma_x$ (mm)	$3\sigma_y$ (mm)
Lattice reference	0	0	10.19	0.41
Geant results	-2.733 ± 0.025	-0.003 ± 0.001	10.247 ± 0.062	0.379 ± 0.003
DD4hep results	$\text{-2.991} \pm 0.036$	$\textbf{-0.003} \pm 0.006$	10.290 ± 0.087	0.565 ± 0.014

- Fit to beam position on the front of Q3eR
- Comparison to lattice calculation and Geant
- Mean and σ_{ν} is consistent with Geant and lattice
- Vertical distribution (y) is more wide than the lattice reference

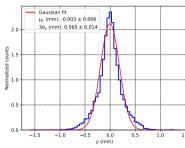


Figure: Beam along v in DD4hep

Summary

- Geant agrees with lattice calculations
- DD4hep is acceptable after the corrections (separate vacuum volumes and more precision)
- Quadrupoles have to be rotated by 90 degrees along z to get the same convention as comes from lattice
- The rotation is achieved either in magnet placement or by inverting the sign of field gradient
- Original problem with DD4hep can't be reproduced in Geant as of now Geant is very stable to changes in precision and in equations for field stepping
- Same hepmc3 input file is used with Geant and DD4hep
- Same physics list (FTFP_BERT) and random seed are set in both simulations
- Identical Geant version (10.7.p01) was used to build the DD4hep (and Athena framework)