STAR Isobar Blind Analysis Method

James L. Drachenberg for the STAR Collaboration BNL Isobar Results Seminar August 31, 2021

Supported in part by

OUTLINE

- Considerations
- Data-taking for blind analysis
- Analysis blinding steps
- After unblinding
- Summary

Important Considerations

For STAR Chiral Magnetic Effect (CME) analyses:

- Critical to account for
 - Time-dependent detector fluctuations
 - Anomalies in the collection of 30-minute "runs" of the data acquisition system
- Do not randomize variables that may severely compromise analysis quality
 - E.g., randomizing the sign of reconstructed charged-particle signals prevents chargedependent efficiency corrections
- 2018 data-taking used frequent switching of "isobar" species ($^{96}_{44}$ Ru + $^{96}_{44}$ Ru and $^{96}_{40}$ Zr + $^{96}_{40}$ Zr)
 - Species expected to have comparable behavior, e.g., luminosity, trigger, energy, vertex distribution, occupancy of tracks
 - Possible to blind species by interleaving or "mixing" events from two species
- Certain non-analyst experts need access to un-blind data
 - E.g.. STAR detector experts during RHIC running or offline calibration experts
 - All must recuse themselves from blind physics analysis
- Selection of high quality runs for analyses must proceed prior to mixing of events

Vital Stats

- 2017 BNL NPP Program Advisory Committee recommended *blind analyses* of *CME studies* of Run-18 isobar data
- Published analysis blinding manuscript:

Methods for a blind analysis of isobar data collected by the STAR collaboration,

J. Adam et al. (STAR Collaboration), Nuclear Science and Techniques 32, 48 (2021).

- Methods developed and accepted by collaboration in January 2018, well before 2018 data-taking
- Step-0, Initial steps
 - Calibrations and quality assurance (QA) of data acquisition "runs" by calibration experts
 - "Mock data challenge": Sanity-check of feasibility and implementation
- Step-1, "The Reference"
 - Provide output files composed of collision data from a *mix* of the two isobar species
 - As much as possible, order of collision "events" *respects time-dependent changes in detector conditions*
 - Analysis code and time-dependent QA tuned and frozen
- Step-2, "The run by run QA sample"
 - Provide files that blind the isobar species but do not "mix" data from different data acquisition runs
 - Only allow "run-by-run" corrections and code alteration directly resulting from these corrections
- Step-3, Full un-blinding

Data-taking for Isobar Collisions

RHIC Running

• Switch isobar species each time beam is inserted into RHIC

Rate

- Stable luminosity (matched between species) with long (~ 20 hour) beam circulation time
- Adjust and level luminosity to optimize data collection rate while minimizing backgrounds and systematics
- Restrict species-related information to those necessary for successful data-taking
- Calibration experts (recused from CME analyses) evaluate data quality "in real time"

Step-0: Initial Steps

"The Tune-up"

- Calibrations and quality run selection by un-blind experts
- Develop software infrastructure to implement the blinding procedure
 - Event mixing procedure and run-numbers encrypted
 - Additional information obfuscated in data
 - Event ID, run ID, event timestamp, collision species, hit/coincidence/background rates from certain detectors
- "Mock data challenge"
 - Sanity-check of feasibility and implementation
 - Utilize blinding procedures on 2018 27 GeV Au+Au data
 - Analysts tune code on "mock data"
 - Check that data blinding infrastructure works as intended
 - Verify the appropriate information is blinded as intended
 - Ensure appropriate information is accessible to analysts
 - Check that analysis codes run properly on "blind" data structures
 - Confirm "blind" and "unblind" results are the same
 - sanity check of procedures

Step-1: Isobar Blind and Mixed

"The Reference"

- Provide output files composed of events from a *mix* of the two isobar species
 - Mixing procedure encrypted and known only by two computing experts (recused)
- As much as possible, order of events *respects time-dependent change in run conditions*
- Analysis code and time-dependent QA tuned
- Critical analysis needs enabled by this step:
 - Extraction of time-dependent spectra for quality assessment
 - Detection of time-dependent anomalies
 - Measurement of peak widths relevant to momentum resolution

Following completion of Step-1, analysis codes are frozen and committed to the repository Before moving to Step-2, codes are documented and reviewed by the isobar paper review committee

Step-2: Isobar Blind

"The run by run QA sample"

- Provide data files that obscure the species but do *not* mix events across different runs
 - Limit the number of events to prevent deciphering species by simple counting
- Only run-by-run corrections and code alteration directly resulting from these corrections are allowed at this stage
- Additional bad runs identified based on physics quantities and discarded
 - Analysts perform run-by-run QA using a predefined and frozen algorithm
- This step enables analysts to perform QA using quantities relevant to their specific analysis

Following completion of Step-2...

- Analysis codes are reviewed, frozen, and committed to the repository
- Fully un-blind data are released and analyzed with the frozen codes
- Only changes to correct "mistakes" are allowed after unblinding
 - Errors in arithmetic
 - Unintended departures from *documented and approved* procedures, cuts, corrections, and systematic uncertainty estimates

Summary

- STAR has developed a procedure for the CME isobar blind analyses
 - Step-0: Calibrations, run-QA, and mock data challenge
 - Step-1: Isobar blind and mixed (analysis codes tuning)
 - Step-2: Isobar blind and un-mixed (run-by-run QA and correction)
 - Step-3: Full un-blinding (physics analysis)
- Development and implementation has been a substantial, collective undertaking
 - Innovative RHIC running
 - New software and computing infrastructure
 - Cooperation across analysis groups, physics working groups, committees, etc.

Thank you to all who supported the effort!

