# Electron beam gas <br> Jaroslav Adam 

BNL

## September 13, 2021

IR non collaboration specific topical meeting

## Introduction

- Electron beam - gas bremsstrahlung for electrons at $E_{e}=10 \mathrm{GeV}$ will be shown here
- Lattice and pressure data are available in indico.bnl.gov/event/10974/contributions/51260/
- Data on pressure are given in Detector.chamber.vacuum.Aug2021.xlsx
- Electron lattice for 10 GeV beam is given in esr-ir6-100-10.txt
- Beam parameters are explained in readme in indico and in arxiv.org/abs/1404.0923
- Emittance for 10 GeV electrons is $\varepsilon_{x}=20 \mathrm{~nm}$ and $\varepsilon_{y}=1.3 \mathrm{~nm}$ from EIC_CDR_Final.pdf Table 3.3
- Sample of 10 M bremsstrahlung events was generated for 10 GeV electrons on static protons from $\mathrm{H}_{2}$ gas
- Output in HepMC3 format contains bremsstrahlung photons and scattered electrons
- Interaction vertex follows from pressure and transverse beam size
- Angular divergence is applied to bremsstrahlung photons and scattered electrons according to beam parameters


## Chamber pressure

- Pressure of $\mathrm{H}_{2}$ gas from Detector.chamber.vacuum.Aug2021.xlsx
- Case of 10000 Ahrs
- The pressure is given as a function of $z$ along the beam
- Points are the data from xlsx, lines are a result of linear interpolation for use in the generator
- The gas represents a fixed target to the electron beam
- Beam-gas vertex distribution along $z$ is given by the pressure



## Transverse beam size

- Width of beam in $x$ (horizontal) and $y$ (vertical) directions
- Given by emittance $\varepsilon$ and $\beta$-function as

$$
\sigma_{x, y}=\sqrt{\varepsilon_{x, y} \beta_{x, y}}
$$

- $\varepsilon$ is a constant and $\beta$ depends on actual position along the ring
- Points in the plot are data from lattice
- Smooth interpolation by Hermite polynomial is possible thanks to slope of $\beta$ function $\alpha$ : $\alpha=-\beta^{\prime} / 2$
- Transverse beam width $\sigma_{x, y}$ gives vertex
 position in $x$ and $y$


## Beam angular divergence

- Angular divergence gives spread in angles of beam particles
- With $\alpha$ and $\beta$ from electron lattice the divergence is

$$
\sigma_{\theta}=\sqrt{\epsilon \frac{1+\alpha^{2}}{\beta}}
$$

- Points in the plot show data from lattice
- Lines are linear interpolation
- The divergence is applied to generated photon and electron as random Gaussian rotations imposed on particles 3-momenta
 with the width of $\sigma_{\theta x, y}$


## Beam-gas interaction vertex

Figure: $x z$ plane

- Distribution of electron beam - gas interaction vertices
- Shape in $x$ and $y$ is a Gaussian with $\sigma_{x, y}$ at a given location in $z$
- Shape in $z$ follows the pressure
- Scale in $z$ is in $m$, scale in $x$ and $y$ is mm

Figure: yz plane


## Photon energy spectrum

- Distribution of photon energies for electron beam $E_{e}=10 \mathrm{GeV}$ on a fixed proton
- Total cross section for $E_{\gamma}>0.1 \mathrm{GeV}$ is $\sigma_{\mathrm{BR}}=$ 150.969 mb



## Photon polar angles

- Angular distribution of bremsstrahlung photons
- The shape is more broad in region of higher divergence in $z$ from 5 to 12 m
- Comparison is made to central region $|z|<$ 5 m of smaller divergence



## Scattered electron energy and polar angle

Figure: Electron energy


Figure: Electron polar angle


## Photon projection onto $x y$ plane at $z=0$

- Bremsstrahlung photons are projected onto radial position $r_{x y}$ on $x y$ plane at the origin
- Projected radial position $r_{x y}$ is given by photon polar angle $\theta_{\gamma}$ and vertex position $x$, $y$ and $z$ :

$$
r_{x y}=z \times \tan \theta_{\gamma}+\sqrt{x^{2}+y^{2}}
$$

- Correction to transverse vertex position $\sqrt{x^{2}+y^{2}}$ is $\mathcal{O}(1) \mathrm{cm}$




## Photon projection onto $x y$ plane at $z=3.7 \mathrm{~m}$

- Photons projection $r_{x y}$ on $x y$ plane is done at approximate forward ECAL position, $z=$ 3.7 m
- Projected radial position $r_{x y}$ is given by photon polar angle $\theta_{\gamma}$ and vertex position $x$, $y$ and $z$ :

$$
r_{x y}=z \times \tan \theta_{\gamma}+\sqrt{x^{2}+y^{2}}
$$

- Correction to transverse vertex position $\sqrt{x^{2}+y^{2}}$ is $\mathcal{O}(1) \mathrm{cm}$


## Scattered electron projection onto $x y$ plane

- Projection $r_{x y}$ is done for scattered electrons, same locations in $z$ as for the photons

Figure: $z=0$


Figure: $z=3.7 \mathrm{~m}$


## Calculation of event rate by bremsstrahlung on $\mathrm{H}_{2}$ gas

- Rate $R$ of bremsstrahlung events per second is

$$
R=\sigma_{\mathrm{BR}} \times I \times N
$$

- Total cross section for $E_{\gamma}>0.1 \mathrm{GeV}$ is $\sigma_{\mathrm{BR}}=150.969 \mathrm{mb}$
- I is beam current in electrons per second, given by current in Amps from CDR Tab. 3.3 (2.5 A) divided by elemental charge in C
- $N$ is surface density as number of protons per $\mathrm{m}^{2}$ from pressure $p$, Boltzmann constant $R_{B}$ and normal temperature $T(293.15 \mathrm{~K})$ :

$$
N=\delta z \times 2 \times p /\left(R_{B} \times T\right)
$$

- Factor of 2 stands for two protons in $\mathrm{H}_{2}$ which makes the pressure $p$
- $\delta z$ is slice of length along $z$


## Event rate by electron beam - gas due to bremsstrahlung

- Event rate $R$ along $z$ in $\delta z=200 \mathrm{~cm}$
- Each interval $\delta z$ contributes bremstrahlung beam-gas rate shown in the plot
- Rate from a given range in $z$ is a sum of individual $\delta z$ contributions within that range



## Summary

- Even rates are estimated as $\mathcal{O}(10) \mathrm{kHz}$ in regions of higher pressure, in slices per 200 cm
- Regions of larger divergence give more broad angular distribution
- Generator implementation is here: github.com/adamjaro/GETaLM/blob/master/models/gen_beam_gas.py
- It is a part of generator for luminosity and tagger studies described in arxiv.org/abs/2105.10570
- Output data in HepMC3 are in:

```
/gpfs02/eic/jadam/GETaLM_data/beam_gas/beam_gas_ep_10GeV_emin0p1_10Mevt.hepmc
```

