Electron beam gas

Jaroslav Adam

BNL

September 13, 2021

IR non collaboration specific topical meeting

Jaroslav Adam	(BNL)	
---------------	-------	--

Introduction

- Electron beam gas bremsstrahlung for electrons at $E_e = 10$ GeV will be shown here
- Lattice and pressure data are available in indico.bnl.gov/event/10974/contributions/51260/
- Data on pressure are given in Detector.chamber.vacuum.Aug2021.xlsx
- Electron lattice for 10 GeV beam is given in esr-ir6-100-10.txt
- Beam parameters are explained in readme in indico and in arxiv.org/abs/1404.0923
- Emittance for 10 GeV electrons is $\varepsilon_x = 20$ nm and $\varepsilon_y = 1.3$ nm from EIC_CDR_Final.pdf Table 3.3
- Sample of 10M bremsstrahlung events was generated for 10 GeV electrons on static protons from H₂ gas
- Output in HepMC3 format contains bremsstrahlung photons and scattered electrons
- Interaction vertex follows from pressure and transverse beam size
- Angular divergence is applied to bremsstrahlung photons and scattered electrons according to beam parameters

Chamber pressure

- Pressure of H₂ gas from Detector.chamber.vacuum.Aug2021.xlsx
- Case of 10000 Ahrs
- The pressure is given as a function of *z* along the beam
- Points are the data from xlsx, lines are a result of linear interpolation for use in the generator
- The gas represents a fixed target to the electron beam
- Beam-gas vertex distribution along z is given by the pressure

Transverse beam size

- Width of beam in *x* (horizontal) and *y* (vertical) directions
- Given by emittance ε and β -function as

$$\sigma_{\mathbf{X},\mathbf{y}} = \sqrt{\varepsilon_{\mathbf{X},\mathbf{y}}\beta_{\mathbf{X},\mathbf{y}}}$$

- ε is a constant and β depends on actual position along the ring
- Points in the plot are data from lattice
- Smooth interpolation by Hermite polynomial is possible thanks to slope of β function α : $\alpha = -\beta'/2$
- Transverse beam width σ_{x,y} gives vertex position in x and y

Beam angular divergence

- Angular divergence gives spread in angles of beam particles
- With α and β from electron lattice the divergence is

$$\sigma_{\theta} = \sqrt{\epsilon \frac{1 + \alpha^2}{\beta}}$$

- Points in the plot show data from lattice
- Lines are linear interpolation
- The divergence is applied to generated photon and electron as random Gaussian rotations imposed on particles 3-momenta with the width of $\sigma_{\theta x,y}$

Beam-gas interaction vertex

Photon energy spectrum

- Distribution of photon energies for electron beam *E_e* = 10 GeV on a fixed proton
- Total cross section for E_{γ} > 0.1 GeV is $\sigma_{\rm BR}$ = 150.969 mb

Photon polar angles

- Angular distribution of bremsstrahlung photons
- The shape is more broad in region of higher divergence in *z* from 5 to 12 m
- Comparison is made to central region |z| <
 5 m of smaller divergence

Scattered electron energy and polar angle

Photon projection onto xy plane at z = 0

- Bremsstrahlung photons are projected onto radial position r_{xy} on xy plane at the origin
- Projected radial position *r_{xy}* is given by photon polar angle θ_γ and vertex position *x*, *y* and *z*:

$$r_{xy}=z imes$$
tan $heta_{\gamma}+\sqrt{x^2+y^2}$.

• Correction to transverse vertex position $\sqrt{x^2 + y^2}$ is $\mathcal{O}(1)$ cm

Photon projection onto xy plane at z = 3.7 m

- Photons projection r_{xy} on xy plane is done at approximate forward ECAL position, z = 3.7 m
- Projected radial position *r_{xy}* is given by photon polar angle θ_γ and vertex position *x*, *y* and *z*:

$$r_{xy} = z imes an heta_\gamma + \sqrt{x^2 + y^2}$$

• Correction to transverse vertex position $\sqrt{x^2 + y^2}$ is $\mathcal{O}(1)$ cm

Scattered electron projection onto xy plane

• Projection r_{xy} is done for scattered electrons, same locations in z as for the photons

Figure: z = 0

Figure: *z* = 3.7 m

Jaroslav Adam (BNL)

Calculation of event rate by bremsstrahlung on H₂ gas

• Rate *R* of bremsstrahlung events per second is

 $\pmb{R} = \sigma_{
m BR} imes \pmb{I} imes \pmb{N}$

- Total cross section for E_{γ} > 0.1 GeV is $\sigma_{\rm BR}$ = 150.969 mb
- I is beam current in electrons per second, given by current in Amps from CDR Tab. 3.3 (2.5 A) divided by elemental charge in C
- N is surface density as number of protons per m² from pressure p, Boltzmann constant R_B and normal temperature T (293.15 K):

$$N = \delta z \times 2 \times p/(R_B \times T)$$

- Factor of 2 stands for two protons in H₂ which makes the pressure *p*
- δz is slice of length along z

Event rate by electron beam - gas due to bremsstrahlung

- Event rate *R* along *z* in $\delta z = 200$ cm
- Each interval δz contributes bremstrahlung beam-gas rate shown in the plot
- Rate from a given range in z is a sum of individual δz contributions within that range

- Even rates are estimated as O(10) kHz in regions of higher pressure, in slices per 200 cm
- Regions of larger divergence give more broad angular distribution
- Generator implementation is here: github.com/adamjaro/GETaLM/blob/master/models/gen_beam_gas.py
- It is a part of generator for luminosity and tagger studies described in arxiv.org/abs/2105.10570
- Output data in HepMC3 are in:

/gpfs02/eic/jadam/GETaLM_data/beam_gas/beam_gas_ep_10GeV_emin0p1_10Mevt.hepmc