Fun4All Software Validation

Panjab University Chandigarh, India

Simran (Student) Lokesh Kumar

Indian Institute of Technology, Indore

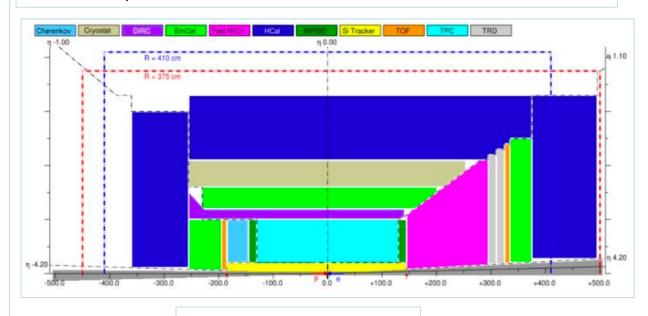
Sagar Joshi (Student) Siddhant Rathi (Student) Ankhi Roy

In collaboration with Chris Pinkenberg and Kolja Kauder

Work Detail

Energy resolution and parameterization of energy resolution of Calorimeters in Fun4All framework – to be used in EIC-smear

Details of Calorimeters:


Electromagnetic Calorimeters (EMCAL):

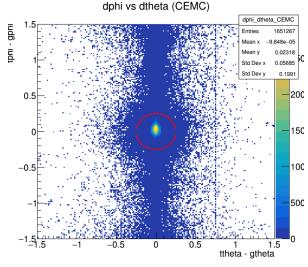
Lead Tungstate (PWO) crystals

- Midrapidity (Barrel) (CEMC): -1.5 < η < 1.2
- Forward rapidity (Ion/forward direction) (FEMC): 1.3 < η < 3.3
- Backward rapidity (Electron/backward direction) (EEMC):
 -3.5 < n < -1.7

Hadronic Calorimeters (HCAL): Steel absorber (inner), Al Absorber (outer) + plastic scintillator

- Forward region (FHCAL): 1.2 < η < 3.5
- Barrel (HCALIN, HCALOUT): -1.1 < η < 1.1

Ref.: EIC Yellow Report

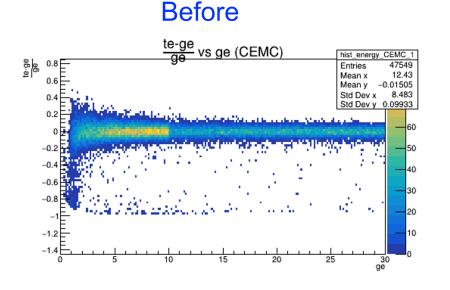

Work Detail

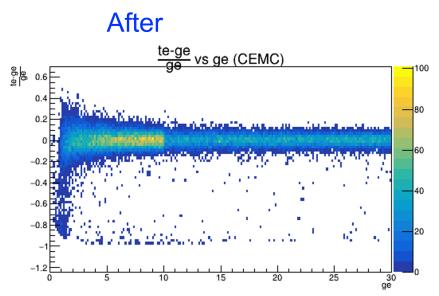
- Particles used : e-, π
- Events analyzed: 100000 (0-30 GeV) + 50000 (0-15 GeV)

Electrons: Resolution obtained separately for CEMC, FEMC, EEMC **Pions:** Resolution for common eta regions: -1.1 < η < 1.1 (CEMC, HCALIN, HCALOUT) and 1.3 < η < 3.3 (FEMC, FHCAL)

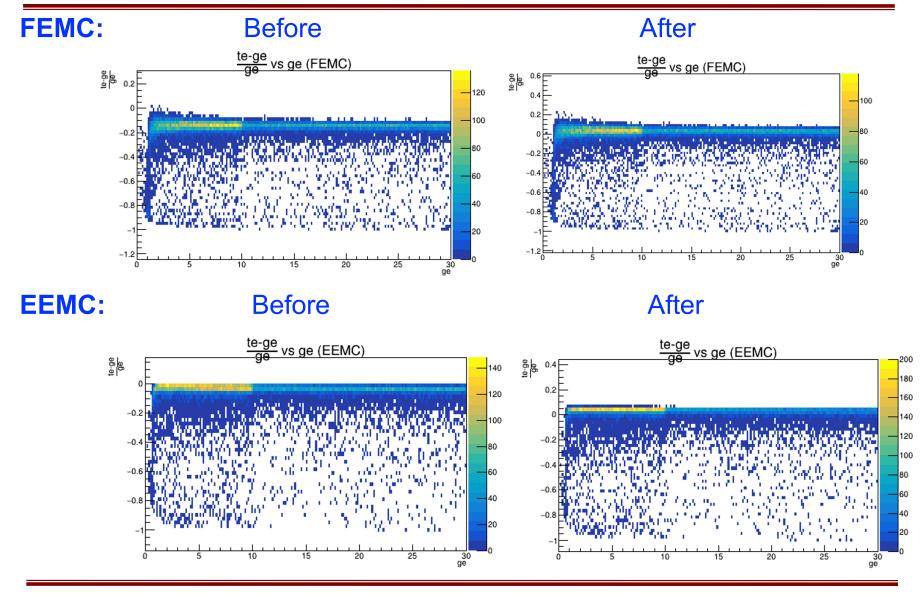
- Considering simplest case:
 - Photon digitization noise turned off.

 Manual clustering performed on towers – circular cuts phi vs eta differences.

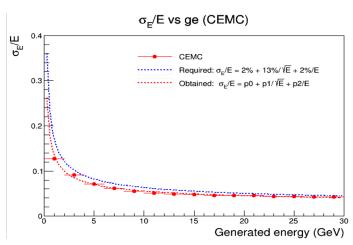



Electron: Calibration

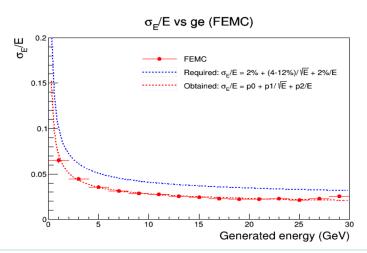
Electron calibration procedure:


- Obtain ratio of reconstructed tower energy (te) to generated (ge) versus generated (ge)
- Parameterize using a suitable fit function
- Do the calibration as: te(calibrated) = te(raw)/fit_function

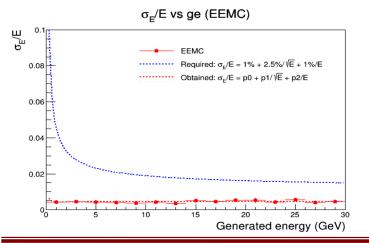
CEMC:



Electron: Calibration


Electron: Energy Resolution

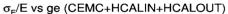
CEMC:

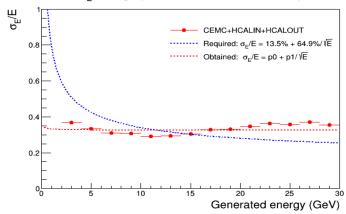


$$\sigma_{\text{F}}/\text{E} = 2.0520\% + 10.534\%/\sqrt{\text{E}} + 2\%/\text{E}$$

FEMC:

$$\sigma_{\rm E}/{\rm E}$$
 = 1.15892% + 4.84642%/ $\sqrt{\rm E}$ + 1.08484%/E

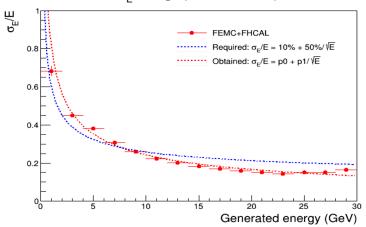



EEMC:

$$\sigma_{\text{F}}/\text{E} = 0.493094\% + 0.162239\%/\sqrt{\text{E}} + 0.117333\%/\text{E}$$

Pion: Energy Resolution

Barrel region: CEMC + HCALIN + HCALOUT



$$\sigma_{\rm E}/{\rm E} = 32.253\% + 0.979982\%/\sqrt{\rm E}$$

Forward region: FEMC + FHCAL

σ_{E}/E vs ge (FEMC+FHCAL)

$$\sigma_{\rm E}/{\rm E}$$
 = -2.06291% + 83.4022%/ $\sqrt{\rm E}$

Experience and Interest

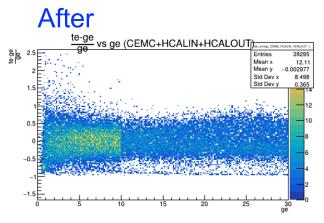
Panjab University

S. No.	Manpower	Current work	Interest	Availability
1	Lokesh Kumar (Faculty) (lokesh@pu.ac.in)	Fun4ALL validation – energy resolution of calorimeters	DWG: Calorimetry/PID PWG: Jets/HF	As a supervisor
2	Simran (Student)	- same -	- same -	Till March- 2022

IIT Indore

S. No.	Manpower	Current work	Interest	Availability
1	Ankhi Roy (Faculty) (ankhi@iiti.ac.in)	Fun4ALL validation – energy resolution of calorimeters	PID, Calorimetry, Exclusive	As a supervisor
2	Sagar (Student)	- same -	- same -	One year
3	Siddhant (Student)	- same -	- same -	One year

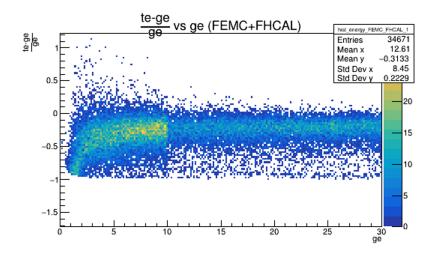
Back-up

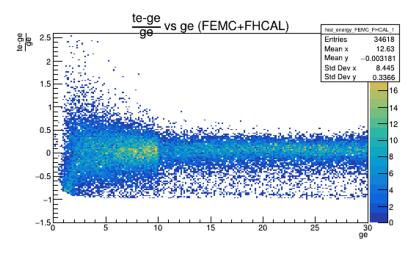

Pion: Calibration

Pion calibration procedure:

- Obtain ratio of reconstructed tower energy (te) to generated (ge) versus generated (ge)
- Parameterize using a suitable fit function
- Calibrate the tower energy of respective calorimeter as: te(scaled) = [te(raw)/fit_function] * (mean of te/ge)
- Add the corresponding scaled tower energies
- Obtain te/ge vs ge for summed-up scaled energies and fit using a function.
- Calculate the final calibrated tower energy as: te(calibrated) = te(summed)/fit_Function

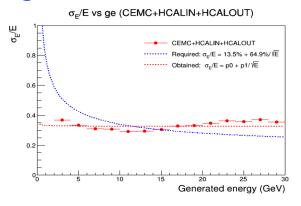
Barrel region: CEMC + HCALIN + HCALOUT



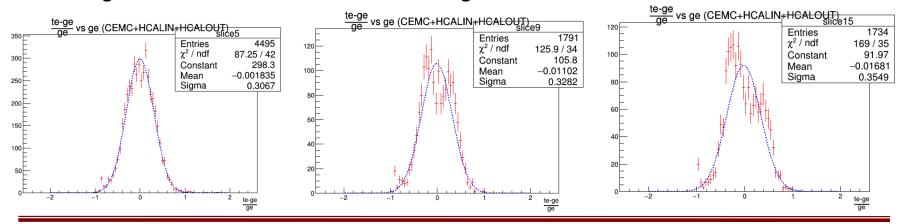

Pion: Calibration

Forward region: FEMC + FHCAL

Before



After


Pion: Energy Resolution

Barrel region: CEMC + HCALIN + HCALOUT

$$\sigma_{\text{F}}/\text{E} = 32.253\% + 0.979982\%/\sqrt{\text{E}}$$

- Unexpected worsening in energy resolution at high energies for barrel calorimeters.
- Arising due to a second peak appearing in the case of ΔE/E distribution at high energies – not observed for forward region.

Summary & Outlook

- Study of energy resolution of calorimeters within Fun4All framework
- Electrons show acceptable results.
- Pion energy resolution has issue towards higher energies further investigation required.

Next steps:

- Investigate issue in case of barrel for pions.
- Turn on the photon digitization to see the affect of noise on resolution.

Future directions:

- Tracking QA
- Study different input generators Pythia6, Pythia8, SARTE...