Using the SR info in full detector simulation and results Jin Huang Brookhaven National Lab

Summary from past discussions in the EIC project IR background meetings

EIC: unique collider, Important of minimizing background

- EIC luminosity is high, but collision cross section is small (∝ α_{EM}²) → Important to control background for detector safety and minimizing systematic uncertainty
- Synchrotron background from the high intensity electron ring pose a unique challenge

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M <i>N</i> _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

Considerations for Synchrotron bgd.

- See also talk, E. C. Aschenauer
- Synchrotron background is major challenge for high energy collider with electron beams
- Many detectors at EIC could be venerable to Synchrotron background
 - E.g. challenging for readout design, background filtering tracking, and fake large DCA for HF
- Strong emphasize on co-design of collider, IR and experiment that is low in Synchrotron background from the start:
 - General EIC R&D eRD21
 - bi-weekly IR background meeting joining accelerator and detector physicists

- 100k SynRad synchrotron photon by M. Stutzman
- Reproduce this Geant4 simulation from GitHub: macros / SynRad->HepMC reader

SR full detector simulation workflow

In this talk, Fun4All-EIC simulation is used: <u>https://eic.github.io/software/fun4all.html</u> Based on G4 description of an earlier detector concept: ePHENIX/arXiv:1402.1209

Brookhaven National Laboratory

Jin Huang <jhuang@bnl.gov>

Validation 1: G4 treatment of low energy X-ray y

- Simplest setup for a Geant4 validation,
- A few keV photon energy threshold for leaving non-zero ionization energy in silicon
- Reproduce: <u>https://github.com/blackcathj/macros/blob/synrad_valid_flatphoton/macros/g4g4mulations/PhotonConversion.ipynb</u>

High-z Coating validation Note: normal indenting angle Further reduction if shallow indenting

National Laboratory

Validation 2: SVT detector response

- Synchrotron photon interaction are digitized to detector data rate with sPHENIX ALPIDE model
 Flexible Printed Circuit(FPC)
- Calibrated with 2019 sPHENIX test-beam

<u>SPHENIX/ALICE ALPIDE ASIC model:</u> Geant4 transport (1.8 keV photon threshold for Be pipe)

- -> Ionization energy loss in active silicon
- -> produce ionization trail
- -> ionization diffusion
- -> map to readout pixels
- -> electronics threshold (~1keV)
- -> Pixel hit -> ALPIDE data format
- -> Data rate

Brookhaven

ational Laboratorv

MAPS pixel hit multiplicity per interaction

Brookhaven^{*} National Laboratory

Jin Huang <jhuang@bnl.gov>

SynRad→Detector interface

- We use a cylindrical surface near inner surface of beam pipe to interface SynRad and G4, segmented in facets
- SynRad output
 - total SR flux on each facets
 - VIRTUAL photon of full kinematics and weight
 - Reuse virtual photon O(10) times in G4 simulation to improve stat (and avoid causing too much deviation from Poisson stat.)
- Normalization is obtained bia scale factor (per facet) * sum of virtual photon weight on each facet → flux on facet [link to example notebook]
 - Cautious of coordinate definition

<u>G4 Detector Display w/ this macros</u>

p/A beam

Brookhaven⁻ National Laboratory

Jin Huang <jhuang@bnl.gov>

Electron beam

Normalized photon flux (without energy cuts)

 $0 \leftrightarrow \pi$ flip with dipole B-field

 $0 \leftrightarrow \pi$, +z \leftrightarrow -z flip in coord. choice

SharePoint: March2020Lattice/Full beam & magnets

Brookhaven National Laboratory SharePoint: May2020Lattice/CharlieG oemetry SharePoint: July2020Chamber/24July FirstRun

Synchrotron background: detector response

• Iterating with accelerator design to avoid 10keV photon that exits -50 to +100cm from beam pipe

Note: all photons simulated for detector interaction, without cuts on z or energy. July-2020 lattice/chamber Jin Huang <jhuang@bnl.gov> August EIC IR topical meeting

Normalized y-detector interaction rate

SynRad data tag: July2020Chamber/24JulyFirstRun

Brookhaven National Laboratory

Jin Huang <jhuang@bnl.gov>

Synchrotron background: detector response

- SR background can be overwhelming, orders of magnitude higher than signal rate
- high-Z coating on chamber, e.g. 2-μm Au coating (0.06 X₀) on Be pipe significantly reduces the synchrotron rate
- Absolute hit rate is likely to change by orders of magnitude with changing beam parameter and shielding

Summary

- SR background can be overwhelming, orders of magnitude higher than signal rate
- Tuning on-going with +0.5m IR shift and improving SR photon shielding: See talk C. Hetzel. M. Stutzman
- Absolute hit rate is likely to change by orders of magnitude with changing beam parameter and shielding
- High-z shield on beam pipe (e.g. fewµm Au) is very effective in reducing inner detector hits

Code sharing: G4 macros / SynRad->HepMC reader / Plot notebook & Results @ github.com/blackcathj/SynRad

Jin Huang <jhuang@bnl.gov>

Extra information

Jin Huang <jhuang@bnl.gov>

August EIC IR topical meeting

Coating validation

National Laboratory

Note: normal indenting. Further reduction if shallow indenting

https://github.com/blackcathj/macros/blob/synrad_valid_flatphoton_NEG/macros/g4simulations/PhotonConversion.ipynb

https://github.com/blackcathj/macros/blob/synrad_valid_flatphoton_AuCoating/macros/g4simulations/PhotonConversion.ipynb

Leading EIC beam effects

- Unique accelerator with diverse beam effect direct impact exp.
 - Beam parameter in CDR section 3.1 and tables 3.3 to 3.5 and section 3.2
- > 25-35 mrad beam crossing angle
- Angular beam divergence: O(100urad)
- Crab crossing (bunch-z dependent angle smear): O(<100urad)
- Beam energy spread O(10⁻⁴)

Brookhaven National Laboratory

 Beam vertex spread from 10cm hbunch collider with 1-cm e-bunch at finite crossing angle

New IP6 crossing sign convention, now default in ECCE sim-reco!

EIC CDR / YR (bottom-up view of IP6)

- New convention of IP6 has y-axis towards up and xaxis towards inside the ring
- Hadron beam cross towards -x direction

Brookhaven[®] National Laboratory

• Default of ECCE sim-reco this week(!) at PR26 [link]

New convention (top-down view)

