Large liquid scintillator detector with unprecedented energy resolution

Ziyan Deng Institute of High Energy Physics

NNN15, October 28-31, 2015

Neutrino Mass Hierarchy

- Next generation neutrino experiments focus on mass hierarchy (MH) and CP violation
- MH determination experiments:
 - The medium baseline reactor anti-neutrino oscillation experiments
 - JUNO, RENO-50
 - The long-baseline accelerator (anti-)neutrino oscillation experiments
 - NOvA, DUNE
 - The atmospheric (anti-) neutrino oscillation experiments
 - INO, PINGU, Hyper-K

MH determination with reactor anti-neutrinos

- A large liquid scintillator detector
- Optimized baseline
- Factors to degrade sensitivity
 - Baseline differences to reactor cores
 - Background
 - Accidental, ⁹Li/⁸He, fast neutron, Geo-neutrino

MH determination with reactor anti-neutrinos

Factors to enhance sensitivity

- Higher statistics \rightarrow larger detector and longer exposure
- Better energy resolution
 - \rightarrow more photoelectrons: stochastic term
 - \rightarrow control systematics: non-stochastic term
- Additional information of $\Delta m^2_{\mu\mu}$

Nominal sensitivity at $\sigma=3\%/\sqrt{E}$, 53km, 36GW, 20kton, 6years, eff.=80%: $\Delta\chi^2 \sim 10$ Yu-Feng Li, Jun Cao, Yifang Wang, and Liang Zhan, PRD 88, 013008 (2013)

Large liquid scintillator detector with unprecedented energy resolution

- 20 kton liquid scintillator
 - ~80 IBD candidates at 53km and 36GW
- ~1.5m buffer
 - Reduce PMT radioactivity
- Good energy resolution
 - More photoelectrons
 - LS: high light yield & transparency
 - PMT: high photocathode coverage & QE
 - High transparency LS vessel
 - High transparency buffer material
 - Control systematics
 - energy nonlinearity, PMT dark noise, PMT time resolution, vertex smearing, uniformity of QE
- Low radioactivity background
 - ²³⁸U/²³²Th/⁴⁰K/²²²Rn/²¹⁰Pb/⁶⁰Co/⁸⁵Kr/³⁹Ar
 - From LS, acrylic, water, stainless steel, PMT glass, rock, etc.

How many photonelectrons?

	KamLand		Daya Bay
LS mass ~1000t		~500t	40x8 ton
Light yield 250 p.e./MeV		511 p.e./MeV	163 p.e./MeV
Energy resolution	$6\%/\sqrt{E}$	$5\% / \sqrt{E}$	7.5% / \sqrt{E}

$$3\%/\sqrt{E(\text{MeV})}$$
 \longrightarrow ~1200 p.e./MeV

How to design a detector with 3% energy resolution?

- Scale light yield from running liquid scintillator detectors
- Study detector performance with full detector simulation
 - Based on reliable MC simulation package, p.e. tuned to data
- With expected geometry and optical parameters as input

Detector Simulation

Full detector simulation

- To study detector performance with Monte Carlo method
- Based on Geant4, physics processes from Daya Bay simulation package
 - EM, Hadronic processes
 - Optical processes
 - Scintillation(quenching included), Cerenkov, Absorption, Re-emission,
 - Rayleigh Scattering, Boundary Process
- Geometry
 - 20kton LS, radius: 17.7mm
 - Acrylic vessel: 12cm thickness
 - ~18000 20" PMT

PMT coverage

PMT arrangement method	(1)Layer-by-layer method	(2)9-layers' module layout method	
Optimal radius	Radius has no influence to coverage	Optimal radius: 18.7m	
Symmetry	Less symmetry in theta	More symmetry in theta	
Stainless steel bars	Arrange PMT optimally, then delete PMT where bars occupied		
Maximum coverage	~75.4%		

Detector Simulation

Optical parameters

- Configured with all the optical parameters of the materials
- LS light yield, decay time, emission spectrum, re-emission probability, birks law constants
- Refractive index, absorption length, rayleigh scattering length, PMT QE, PMT CE

PMT quantum efficiency (QE)

PMT collection efficiency (CE)

Detector Simulation

Optical parameters

- LS attenuation length: 20m@430nm
 - Absorption length: 77m@430nm
 - Rayleigh scattering length: 27m@430nm
 - <u>http://arxiv.org/abs/1504.00987</u>
- Water absorption length: 90m
 - Pure water with circulation system

Linear Alky Benzene	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ column	18.6 m
Al ₂ O ₃ column	22.3 m

Acrylic absorption length: 4m

10cm LAB: 100% 4cm Acrylic + 6cm LAB: 97.8%~101.1% 5cm Acrylic + 5cm LAB: 96.6%~101.5% 6cm Acrylic + 4cm LAB: 97.3%~100.9% 8cm Acrylic + 2cm LAB: 96.1%~98.9%

PMT angular response

Detector Simulation

	Daya Bay MC simulation	NEW MC simulation
PMT coverage	6% photocathode coverage ~12% effective coverage with top and bottom reflector	75%
PMT quantum efficiency@430nm	0.2	0.29
absorption length@430nm	25m	77m
Rayleigh scattering length@430nm	40m	27m
LS radius	2m	17.7m
p.e./1MeV	163	1270

Roughly estimation:
$$163 \times \frac{0.75 \times 0.29 \times \exp(\frac{-17.7}{77})}{0.12 \times 0.2 \times \exp(\frac{-2}{25})} = 1271$$

Higher LS Light yield

Fluor concentration optimization

LS Recipe: LAB + PPO + bisMSB

Increase light yield:

Optimization of fluors concentration

bis-MSB concentration optimization

Longer LS attenuation length

- Good raw solvent LAB
 - Improve production processes: cutting of components
 - Using Dodecane instead of MO for LAB production
- Online handling/purification
- Distillation, Filtration, Water extraction, Nitrogen stripping, ...

1MeV at (0,0,0)

Higher PMT QE & CE

Angle

totalPE distribution for different CE

CE at any PMT position can impact on the p.e.

Systematics of energy resolution

Energy non-linearity
PMT QE non-uniformity
PMT dark noise
PMT time resolution
Vertex smearing

MC study of energy non-linearity

- Study non-linearity from Cherenkov and quenching
- Positron events generated position: the center of the LS volume, (0,0,0)
 - Fixed position, minimum non-uniformity
- Energy reconstruction

$$E_{rec} = E_0 \times \frac{totalPE}{N_0}$$

Cherenkov light contribute to B term: 0.5%

MC study of other non-stochastic terms

Procedure to study detector effects by toy MC

• Expected p.e. caculation with very simple optical model

- Max-likelihood reconstruction: to get vertex and energy
- Effects can be inserted to above procedure one by one

PMT QE non-uniformity

$$\frac{\sigma}{E_{\rm rec}} = \sqrt{\frac{A^2}{E_{\rm rec}} + B^2 + \frac{C^2}{E_{\rm rec}^2}}$$
A: Stochastic term
B: Constant term
C: Noise term

PMT QE non-uniformity	0	20%	
B(%)	0.029	0.26	

PMT time resolution

PMT time resolution impact on vertex resolution

Generated at LS uniformly

	PMT time resolution	0ns	1ns	2ns	3ns
$\frac{\sigma}{E_{rec}} = \sqrt{\frac{A^2}{E_{rec}} + B^2 + \frac{C^2}{E_{rec}^2}}$	(sigma)				
A: Stochastic term B: Constant term C: Noise term	Vertex resolution@1MeV	7.3cm	7.7cm	8.9cm	10.8cm
	B(%)	0.09	0.1	0.13	0.18

PMT dark noise

R12860-ZB8234 Dark Rate @ 107

	Dark noise	A (%)	B (%)	C (%)
1	10kHz/PMT 300ns time window	2.68	0	0.53
	50kHz/PMT 200ns time window	2.68	0	0.96
	50kHz/PMT 300ns time window	2.68	0	1.18

A. Stochastic terri

B: Constant term

C: Noise term

C term can be less if dark noise can be removed effectively during energy reconstruction.

Summary of energy resolution

Effects	A(%)	B(%)	C(%)
1400 p.e./MeV (average at LS volume)	2.68		
PMT charge resolution(30%)	2.8	0	0
Cerenkov light	0	0.5	0
PMT dark noise(50kHz, 200ns window)	2.68	0	0.96
PMT QE non-uniformity(20%)	2.68	0.26	0
Vertex smearing(11cm @1MeV)	2.68	0.18	0

Impact to MH sensitivity:

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{A}{\sqrt{E}}\right)^2 + B^2 + \left(\frac{C}{E}\right)^2} \approx \sqrt{\left(\frac{A}{\sqrt{E}}\right)^2 + \left(\frac{1.6B}{\sqrt{E}}\right)^2 + \left(\frac{C}{1.6\sqrt{E}}\right)^2}$$

 $\sqrt{A^2 + (1.6B)^2 + (\frac{\overline{C}}{1.6})^2} < 3\%$

To get effective energy resolution: $3\%/\sqrt{E}$

- LS attenuation length: >20m @430nm
- PMT QE: >30%@430nm
- PMT photocathode coverage: >75%
- PMT charge resolution: <30%
- PMT QE non-uniformity: <20%
- PMT time resolution: <3ns
- PMT dark noise: <50kHz/PMT

THANK YOU

backup

Radioactivity of Detector Materials

	U238	Th232	K40	Pb210 (Rn222)	Ar39	Kr85	Co60	Reference experiment
LS	10 ⁻⁶	10 ⁻⁶	10 ⁻⁷	1.4. 10 ⁻¹³	50 μBq/m³	50 μBq/m ³	~	Borexino CTF, KamLAND
PMT Glass	22	20	3.54	~	~	~	~	Schott glass
Acrylic	10 ppt	10 ppt	10 ppt	~	~	~	~	SNO
Steel	0.0012 Bq/Kg (0.096)	0.008 Bq/Kg (1.975)	0.0134 Bq/Kg (0.049)	~	~	~	0.002 Bq/Kg	DYB
Copper	1.23 mBq/Kg	0.405 mBq/Kg	0.0377 mBq/Kg	~	~	~	~	CDEX
Film	2 ppt	4 ppt	1 ppt					
Dust	30 Bq/Kg	40 Bq/Kg	600 Bq/Kg				Defe	

Default unit: ppb

Radioactivity MC Simulation

LS R (m) (Cut 0.7MeV)	PMT (Schott) (Hz)	Acrylic (Hz) (10ppt)	Strut (steel) (Hz)	Fastener (copper) (Hz)	SUM (Hz)
<17.7	2.43	69.23	0.89	0.82	73.37
<17.6	1.91	41.27	0.66	0.55	44.38
<17.5	1.03	21.82	0.28	0.32	23.45
<17.4	0.75	12.23	0.22	0.19	13.39
<17.3	0.39	6.47	0.13	0.12	7.10
<17.2	0.33	3.61	0.083	0.087	4.10
<17.1	0.23	1.96	0.060	0.060	2.31
<17.0	0.15	0.97	0.009	0.031	1.16

PMT position = 19.5 m Buffer thickness F=1.426 m LS radius =17.7 m

External Radiation – Radon in water

- Besides the internal radioactivity discussed above, there' re also external radiations: one is radon in water.
 - simulate equilibrium of ²²²Rn decay chain in ~2m water layer around LS

Rn concentration assumption	Rate of Singles (>0.7 MeV, all volume)	Rate of Singles (>0.7 MeV, in Fiducial volume)		
0.2 Bq/m ³	16 Hz	~1.3 Hz		
1 Bq/m³	80 Hz	~6.4 Hz		
12.5 Bq/m ³ (without any purification)	1000 Hz	~80 Hz		

 \diamond Preliminary requirements to Radon in water pool

- Good N₂ seal
- Sufficient anti-Rn liner on the water pool walls
- Control Rn permeation into water systems

External Radiation – Rock

Radioactivity Summary

Summary of singles rate in fiducial volume(R<17.2m)</p>

ľ	Materials	Detector components	(Rn:	Water Ro (Rn: 0.2Bq/m ³) (320cn		er)	SUM
A	crylic (Hz)	~6.3		~1.3	~0.984		~8.58
		\mathbf{V}					
		РМТ	LS	Acrylic (10pp	ot) Support	Dust	Film
	Acrylic (Hz)	0.33	2.2	3.61	0.17	~	~

Accidental background by radioactivity: 1.1/day

Detector material	$^{238}\mathrm{U}$	238 Th	40 K	⁶⁰ Co	
PMT glass	22 ppb	20 ppb	3.54 ppb	-	
Acrylic	$10 { m ppt}$	10 ppt	$10 \mathrm{\ ppt}$	-	
Polymer film	$2 \mathrm{ppt}$	$4 \mathrm{ppt}$	$1 \; \mathrm{ppt}$	-	
Steel	$0.096 \mathrm{~ppb}$	1.975 ppb	$0.049 \mathrm{~ppb}$	$0.002 \ \mathrm{Bq/kg}$	
Copper	$1.23~\mathrm{mBq/kg}$	$0.405~\mathrm{mBq/kg}$	$0.0377~\mathrm{mBq/kg}$	-	

LS	$^{238}\mathrm{U}$	²³⁸ Th	$^{40}\mathrm{K}$	$^{210}\mathrm{Pb}$	85 Kr	³⁹ Ar
No distillation	10^{-15} g/g	$10^{-15} { m g/g}$	$10^{-16} {\rm g/g}$	$1.4 \cdot 10^{-22} \text{ g/g}$	$50 \ \mu Bq/m^3$	$50 \ \mu Bq/m^3$
After distillation	$10^{-17} {\rm g/g}$	$10^{-17} {\rm g/g}$	$10^{-18} {\rm g/g}$	$10^{-24} { m g/g}$	$1 \ \mu \mathrm{Bq}/\mathrm{m}^3$	-

Fiducial Cut	LS (Hz)	PMT (Hz)	Acrylic (Hz)	Strut (Hz)	Fastener (Hz)	Sum (Hz)
R $<$ 17.7 m	2.39	2.43	69.23	0.89	0.82	75.75
R<17.6 m	2.35	1.91	41.27	0.66	0.55	46.74
R<17.5 m	2.31	1.03	21.82	0.28	0.32	25.75
R<17.4 m $$	2.27	0.75	12.23	0.22	0.19	15.66
R<17.3 m	2.24	0.39	6.47	0.13	0.12	9.33
R<17.2 m $$	2.20	0.33	3.61	0.083	0.087	6.31
R<17.1 m	2.16	0.23	1.96	0.060	0.060	4.47
R<17.0 m	2.12	0.15	0.97	0.009	0.031	3.28

Fiducial Cut	Detector Components	Radon in water	Rock	Total
R<17.2 m	$6.3~\mathrm{Hz}$	$1.3~\mathrm{Hz}$	$0.98~\mathrm{Hz}$	$7.63~\mathrm{Hz}$