SNO+ Status and Prospects

NNN 2015, Stony Brook

Ian Coulter University of Pennsylvania

SNO+ Collaboration

Canada:

Alberta Laurentian Queens **SNOLAB** TRIUMF TUD UNAM LIP Lancaster Liverpool Oxford QMUL Sussex Armstrong Altantic UCBerkeley/LBNL BNL UCDavis UChicago UNC Norwich UPenn Washington

SNO+ Detector

- Large multi-purpose liquid scintillator detector based in Creighton Mine, Sudbury, Canada
- Situated in clean underground lab, SNOLAB, 6800 ft underground (6000 mwe)
- Depth reduces muon flux through detector to 63 per day

7200EWW

SNO+ Detector

- SNO+ will use an upgraded version of the SNO detector:
 - 780t scintillator contained within 6m radius acrylic sphere
 - Shielded by 7kt of ultrapure water
 - Surrounded by ~9300 PMTs mounted on a stainless steel support structure

SNO+ Detector Upgrades

- Improved electronics
 - Able to handle the higher data rates expected with scintillator
 - Additional functionality that was absent during SNO
- New optical fibre calibration systems
 - Mounted on the PMT support structure
 - Allow calibration of PMTs and scintillator properties without risk of contamination
- Repaired PMTs
 - Mostly problems with the base
 - 391 were able to be repaired and replaced
- Hold-down ropes installed
 - Required due to scintillator buoyancy
- New scintillator plant constructed

Tellurium Loading

- SNO+ will search for neutrinoless double beta decay using tellurium loaded into the scintillator
 - Initially 0.3% in Phase 1 then onto higher loadings
- Advantages
 - High natural abundance of 34% so no need to enrich
 - Favourable ratio expected between 0v and 2v modes
 - Ability to load without being optically limited
- Challenges
 - Backgrounds must be well understood
 - Purification techniques have been developed
 - Ability to tag backgrounds with beta-alpha discrimination
 - Several phase model gives ability to see how backgrounds change with loading

Development of Tellurium Loading

- Loading of tellurium in LAB scintillator
 - Cocktail has remained stable for over 2 years
 - No intrinsic optical absorption from tellurium
 - Use a second wavelength shifter to raise above absorption of the surfactant
 - LAB+PPO+Te+Surfactant+2nd WLS
- 0.3% loading has been produced in larger batches of 30L and its properties measured
- Higher loadings of over 5% have been tested on a smaller scale

Tellurium Purification

- Cosmic rays could produce long-lived isotopes in tellurium and surfactant which could prove to be a background for any search
- Getting things underground quickly is important
- First batch of tellurium is currently underground
- Will be purified underground using a water/acid rinse cycle
- Tests show reduction factor of 10³ per pass, 10⁶ for two passes for Co60 as well as reduction of optical impurities
- S.Hans et al, "Purification of telluric acid for SNO+ neutrinoless double-beta decay search", NIM. A795 (2015) 132-139
- Design of tellurium part of scintillator plant is being finalised
- Installation will begin in 2016

Scintillator Plant

- Scintillator plant has been constructed
 - Helium leak checking is complete
 - Cleaning and passivation is complete
 - Insulation is to be installed
 - Some pre-commissioning has taken place with pumps and valves used to direct flow of citric acid and rinse water in cleaning and passivation

- Still to come:
 - Commissioning with water
 - Safety review
 - Commissioning with scintillator
- Expected completion next Summer

Detector Hardware

- New universal interface controlling access to the detector has been designed
 - Control of sources, level sensors, etc...
 - Lower sliding floor has been installed
 - Upper UI and glove-box will be installed before the end of year
- Cover-gas system provides ¹⁴N barrier to prevent ²²²Rd gas from mine air entering the detector
 - Designed to cope with the more stringent radon requirements of SNO+
 - Flexible bags able to compensate for changes in pressure between detector and deck
 - Installed and commissioned

Calibration systems

- New deployed sources have been developed to probe the lower range of energies required in SNO+
- To reduce risk of contamination, work is going into using internal radioactivity of detector for calibration
- Deployed optical source from SNO has been refurbished
- Three optical fibre systems developed to allow calibration of PMTs and measurement of scintillator properties within risking contamination
 - Fibres mounted on the PMT support structure (2/3 installed so far)
 - 92 wide-angle fibres, giving full coverage of detector, to calibrate PMTs
 - 12 narrow-angles fibres at different paths through detector and selection of wavelengths to measure scattering
 - 8 wide-angle fibres at different wavelengths to allow monitoring of scintillator properties
- "The calibration system for the photomultiplier array of the SNO+ experiment", arXiv:1411.4830
- Paper on the scattering module in production

Electronics & DAQ

- Existing SNO electronics will be repaired and reused
- Some new additions:
 - XL3 readout cards can handle the higher data rates expected
 - MTCA trigger cards have ability to handle larger currents generated by greater number of PMT hits and more stable baselines
 - New utility board (TUBii) provides additional functionality, extra triggers, backup clock, pulsers and delays for calibration sources
 - CAEN Digitiser adds trigger waveforms to event data
- New DAQ system ORCA and monitoring tools have been developed

AV Ropes & Cavity

- Existing hold-up ropes replaced for new ropes with lower radioactivity
- Hold-down ropes added to hold buoyant acrylic vessel in position when filled with scintillator
- Paper on the rope system currently in production
- During filling of the cavity, a significant leak was noticed
- Currently, water level has been lowered while this is investigated

Phases of SNO+

- Water phase:
 - ~ 6 months
 - Commissioning of detector, electronics and calibration sources
 - Measurements of external backgrounds
 - Invisible nucleon decay
- Pure Scintillator
 - Initially 6-12 months for detector commissioning
 - Return for longer pure scintillator phase after double beta phase ends
- Te-Loaded Scintillator
 - Load 0.3% tellurium to look for neutrinoless double beta decay
 - Onward to higher loadings

Physics Goals of SNO+

- Neutrinoless double beta decay
- Low energy solar neutrinos
- Supernova neutrinos
- Reactor anti-neutrinos
- Geo-neutrinos
- Invisible nucleon decay
- Other exotics

• New paper:

"Current Status and Future Prospects of the SNO+ Experiment", arxiv:1508.05759

Sensitivity for Invisible Nucleon Decay

- During water phase, SNO+ will look for invisible nucleon decay in ¹⁶O
- Model independent search for the decay of a nucleon to some undetected state,
 - e.g. $n \rightarrow vvv$
- Decay is detected through de-excitation of remaining nucleus
 - For ¹⁶O, ~40% of decays produce a ~6-7 MeV gamma
- First physics result expected from SNO+
- Why can we improve on SNO & Kamland?
 - Switch from D2O to H2O lowers NC background
 - ¹⁶O has a more favourable branching ratio than ¹²C to produce an observable signal

Ovββ Sensitivity (Phase I)

- Top physics priority for SNO+ is a 0vββ using ¹³⁰Te loaded into the scintillator
- Expected spectrum for 5 years assuming:
 - 0.3% ^{nat}Te loading
 - Fiducial radius of 3.5 m
 - 99.99% rejection of ²¹⁴BiPo
 - 98% of ²¹²BiPo
 - Light yield of 200 Nhits/MeV

SNO+ can set a lower bound of: $T_{1/2}^{0\nu\beta\beta} > 9 \times 10^{25} \text{ yr } (90\% \text{ CL})$ Assuming a phase space factor G=3.69x10⁻¹⁴ yr⁻¹ and g_A=1.269, this corresponds to an m_{ββ} of 55-133 meV

Understanding Backgrounds

2νββ:

- Sharply falling with energy
- Assymetric ROI about 0vββ signal
- Limited by energy resolution

External BGs:

- From AV, ropes, PMTs, ...
- Reduced by fiducial volume

External γ

Internal U/Th Chains:

- β from ²¹⁴BiPo and ²¹²BiPo
- Tag using time-coincidence of α follower

Solar ⁸B:

- Flat spectrum
- Constrained by SNO/SK _
- Limited by energy resolution

- Absorption of α produces neutron
- Tagged using time-coincidence between prompt light and neutron capture gamma

Cosmogenics:

- ⁶⁰Co, ¹¹⁰Ag, ⁸⁸Y, ²²Na
- Reduced UG cool down period and purification

Ovββ Sensitivity (Phase II)

- R&D efforts have shown that 3% loading can be achieved with ~150 Nhits/MeV
- This could be compensated for by replacing PMTs with high QE PMTs and new concentrators, expected to triple light yield
- Assumptions:
 - 3% loading of ^{nat}Te
 - Fiducial radius of 3.5 m
 - Light yield of 450 Nhits/MeV

Preliminary studies suggest a sensitivity at 3% and after 5 years running of: $T_{1/2}^{0\nu\beta\beta}>7\times10^{26}~{\rm years}~(90\%~{\rm C.L.})$ and m_{BB} of 19-46 meV

Current Status

- Currently preparing for water-fill
 - Tests of new ropes using the buoyancy of AV
 - Installing calibration fibres
 - Replacing PMTs
 - Inspections of cavity
- Tellurium development
 - Finalising plans for the loading of 0.3%
 - Further development of higher loadings

- DAQ, electronics and data flow have been tested during "air fill" runs
 - Initial commissioning of calibration systems