Zurab Tavartkiladze (Ilia State Univ, Georgia)

Aspects of a Realistic SUSY SO(10)

with K.S. Babu and J.C. Pati JHEP 1006 (2010) 084 1511.???? [hep-ph]

NS CENTER FOR G

NNN15

International Workshop for the Next Generation Nucleon Decay and Neutrino Detector

UD2 Unification Day 2 (UD2)

Simons Center for Geometry and Physics Stony Brook University

October 28-31, 2015

Outline

- Some motivations for SUSY GUTs & Puzzles
- Realistic SUSY SO(10) Model →
 - Simple GUT breaking, -TD splitting
 - Calculable thresholds, improving $\alpha_3(M_Z)$
 - Correlation between d=5 & d=6 decays
 - Consistent & well defined fermion sector \rightarrow
 - Upper bounds on lifetimes
- Summary

SUSY GUT → udress questions & puzzles of SM/MSSM

• Charge Quantization, Unification of multiplets $\subset 16 \text{ of } SO(10)$

In SO(10):
$$(q, u^c, e^c, d^c, l, \nu_R) = 16$$

 \rightarrow Charge Quantization - $\frac{Y(q)}{Y(u^c)} = -\frac{1}{4}, \quad \frac{Y(q)}{Y(e^c)} = \frac{1}{6}, \cdots$

And interesting asymptotic relations [in SO(10)]:

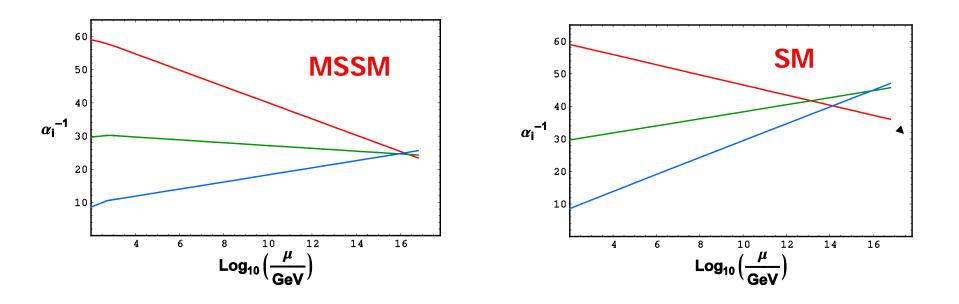
$$\lambda t = \lambda b = \lambda \tau$$
, $m_{VD} = mt$...

Neutrino Masses : VR of SO(10) → see-saw

→Neutrino masses, Oscillations → L-violation → leptogenesis $m_{\nu} \sim \frac{\langle H \rangle^2}{M_R}$

SUSY GUT →

Successful Coupling Unification



Stab. Hierarchy (Light Higgs)

 Iow SUSY scale
 Dark Matter Candidate LSP (with R-parity)

GUT Baryon Asymmetry

Baryogenesis – GUT baryogenesis

K.S. Babu, R.N. Mohapatra PRL 109 (2012) 091803 PR D86 (2012) 035018

via (see-saw) Leptogenesis

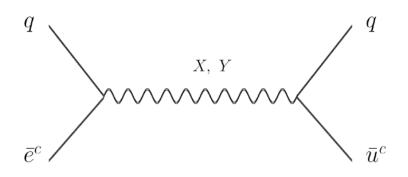
M. Fukugita, T. Yanagida PLB 174 (1986) 45

■ Prediction: B-violation → proton decay

GUT Main Prediction:

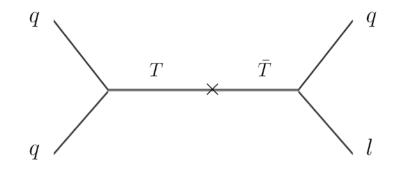
Baryon Number Violation: $\Delta B \neq 0 \rightarrow Proton Decay$

• Gauge Mediated d=6 Decay $X, Y \subset GUT/SM$



In SUSY: new d=5 Decays

T, $\overline{T} \subset$ "Unified Higgses" : H(5)=(h_u, T), $\overline{H}(\overline{5})=(h_d, \overline{T})$



Too Fast in SU(5)

SUSY GUT puzzles:

- GUT Symmetry Breaking? (flat directions/goldstones)
- Doublet-Triplet Splitting
- How/why mu-Term ~ 100 GeV ? (harder in GUT)
- Proton Stability (especially d=5 decay)
- Fermion Masses & Mixings (flavor problem)
- SUSY FCNC (sflavor problem)
- Consistency of the Coupling Unification
 - Calculability of GUT Threshold Corrections
 - Perturbativity all the way up to MPlanck

All these issues are closely related and

Unless *Unified* solution is found, none of the predictions can be trusted..

Realistic SUSY SO(10)

SO(10) -> Solution of DT hierarchy via missing VEV

Dimopoulos, Wilczek'81 Babu, Barr'93 Barr, Raby'97

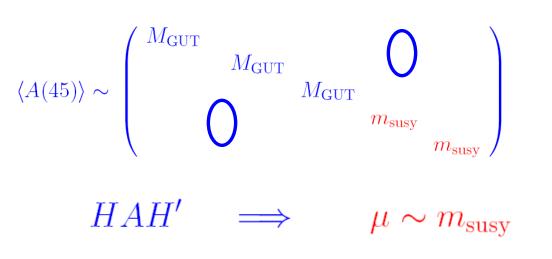
 μ -Term Generation

after SUSY breaking

Missing VEV Solution:

$$\langle A \rangle = i\sigma_2 \otimes Diag(a, a, a, 0, 0)$$

Massless Higgs doublets for unbroken SUSY



Model: Realistic SUSY SO(10)

• **Higgs' System:** $H(10) \supset hu+hd +T_H + \overline{T}_H \longleftrightarrow 163163 H$ and H'(10) for *HAH*' coupling

 $A(45)+C(16)+\overline{C}(16^*)$ for $SO(10) \xrightarrow{BR} SU(3) \times SU(2) \times U(1)$

additional plets: $C'(16) + \overline{C}'(16^*)$ and Z(1) + S(1)

(like by: Barr, Raby'97)

Insuring desirable sym. br. & NO flat dir./pseudo-Golds.

 $U(1) \land Z_2$

Additional Symmetries:

Symmetry Breaking, All order DT splitting, mu –term, Nucleon stability (predictions) Realistic & simple fermion pattern Some More Studies of Missing VEV Mechanism

Several 45's → Large GUT thresholds

Economical Higgs system With 45+16+16*+10,10' → Small GUT thresholds Babu, Barr '93 Chacko, Mohapatra '99

Babu, Pati, Wilczek '99 Barr, Raby '97

Anomalous U(1) \rightarrow all order Hierarchy, But Several 45's \rightarrow Large GUT thresholds

Berezhiani, Tavartkiladze '97 Maekawa '01 Maekawa, Yamashita '02 Other possibility (interesting, but not widely discussed): Missing Partner mechanism in SO(10) GUT

Babu, Gogoladze, Tavartkiladze, PLB 650 (2007) 49;

Babu, Gogoladze, Nath, Syed, PRD85 (2012) 075002

Interesting, but requires high representations. → Large GUT thresholds... (not done complete analysis yet..)

$U(1) \land Z_2$ Transformations:

		A(45)	H(10)	H'(10)	C(16)	$\bar{C}(\overline{16})$	Ζ	S	C'(16)	$\bar{C}'(\overline{16})$	$16_{1,2}$	16_{3}
$\mathcal{U}(1)$	L)	0	1	-1	$\frac{k+4}{2k}$	$-\frac{1}{2}$	$\frac{2}{k}$	$\frac{2}{k}$	$\frac{k-4}{2k}$	$-\frac{k+8}{2k}$	-1	$-\frac{1}{2}$
Z_2	2	—	+	_	+	+	_	+	+	+	$P_{1,2}$	+

Scalar' Superpotential (fixed):

$$\begin{split} W(A) &= M_A \text{tr} A^2 + \frac{\lambda_A}{M_*} \left(\text{tr} A^2 \right)^2 + \frac{\lambda'_A}{M_*} \text{tr} A^4 , \\ W(A, C, C') &= C \left(\frac{a_1}{M_*} ZA + \frac{b_1}{M_*} C\bar{C} + c_1 S \right) \bar{C}' + C' \left(\frac{a_2}{M_*} ZA + \frac{b_2}{M_*} C\bar{C} + c_2 S \right) \bar{C} \\ W(DT) &= \lambda_1 HAH' + \lambda_{H'} \frac{(S^k, Z^k)}{M_*^{k-1}} (H')^2 + \lambda_2 H\bar{C}\bar{C} + \frac{\lambda_3}{M_*} AH'CC' . \end{split}$$

Missing VEV Solution:

(incl. FI-term) Fixed VEVs:

$$\langle A \rangle = i\sigma_2 \otimes Diag(a, a, a, 0, 0)$$

 $\langle A \rangle, \langle C \rangle, \langle \overline{C} \rangle, \langle Z \rangle, \langle S \rangle \neq 0$

Symmetry breaking and VEVs:

Anom. D-term:
$$V_D = g^2_A (\xi + \Sigma q_\phi |\phi|^2)^2$$

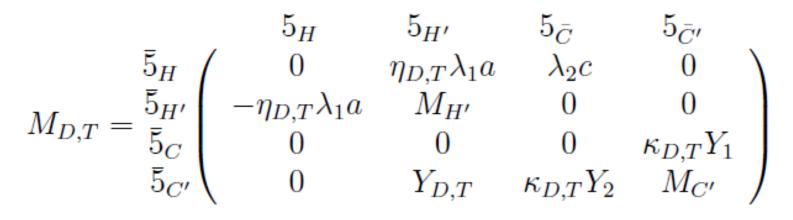
 $c^2 + |z|^2 + |s|^2 = -\frac{k}{2}\xi$

At least one VEV is fixed. This trigger all remaining VEVs:

F=0 directions:
$$-\frac{3a_1}{M_*}za + \frac{b_1}{M_*}c^2 + c_1s = 0$$
, $-\frac{3a_2}{M_*}za + \frac{b_2}{M_*}c^2 + c_2s = 0$
 $C, S, Z \neq 0$

No flat directions, no pseudo-goldstones Only Light MSSM states including doublets are massless

DT Splitting to All Orders



with $\eta_D = 0$, $\eta_T = 1$, $\kappa_D = 3$, $\kappa_T = 2$.

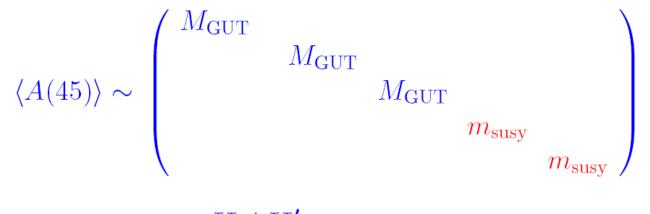
⇒ massless doublet pair M(hu,hd)=0, and *all* M(triplets)-heavy

In SUSY limit $\mu - \text{term} = 0$

After SUSY breaking $\mu \sim m_{
m susy}$

μ -Term Generation after SUSY breaking

Including soft A & B-terms, VEVs are shifted by $\sim m_{susy}$



 $HAH' \implies \mu \sim m_{\rm susy}$

This can always happen with linear terms ($\sim m_{\rm susy}$) in potential

Dvali, Lazarides, Shafi PLB 424, 259; Babu, Dutta, Mohapatra PRD65, 016005; Kitano, Okada ph/0107084 Hall, Nomura, Pierce PLB 538, 359

coupling SH_uH_d with $\langle S \rangle \sim m_{susy} \rightarrow \mu \sim m_{susy}$

GUT Spectrum (all heavy)

Well defined spectrum:

5-plets:

$$M_{D,T} = \frac{5_{H}}{5_{C}} \begin{pmatrix} 5_{H} & 5_{H'} & 5_{\bar{C}} & 5_{\bar{C}'} \\ 0 & \eta_{D,T}\lambda_{1}a & \lambda_{2}c & 0 \\ -\eta_{D,T}\lambda_{1}a & M_{H'} & 0 & 0 \\ 0 & 0 & 0 & \kappa_{D,T}Y_{1} \\ 0 & Y_{D,T} & \kappa_{D,T}Y_{2} & M_{C'} \end{pmatrix}$$
with $\eta_{D} = 0$, $\eta_{T} = 1$, $\kappa_{D} = 3$, $\kappa_{T} = 2$.

$$\frac{M_{D_{1}}M_{D_{2}}M_{D_{3}}}{M_{T_{1}}M_{T_{2}}M_{T_{3}}M_{T_{4}}} = \frac{9}{4M_{\text{eff}}\cos\gamma}$$
, with $\begin{pmatrix} 1 \\ M_{\text{eff}} \end{pmatrix} = (M_{T}^{-1})_{11} = \frac{M_{H'}}{\lambda_{1}^{2}a^{2}}$
10-plets:

$$M(\Psi^{10}) = \frac{\Psi_{L}^{10}}{\Psi_{C'}^{10}} \begin{pmatrix} \overline{\Psi}_{A}^{\overline{10}} & \overline{\Psi}_{\bar{C}'}^{\overline{10}} \\ 0 & 0 & \kappa_{\Psi}Y_{1} \\ X_{2} & \kappa_{\Psi}Y_{2} & M_{C'} \end{pmatrix}$$
with $\Psi = (u^{c}, q, e^{c})$, $\kappa_{\Psi} = (2, 1, 0)$, $M_{\Psi} = (0, 0, M_{\Sigma}/2)$

10's fragments masses:

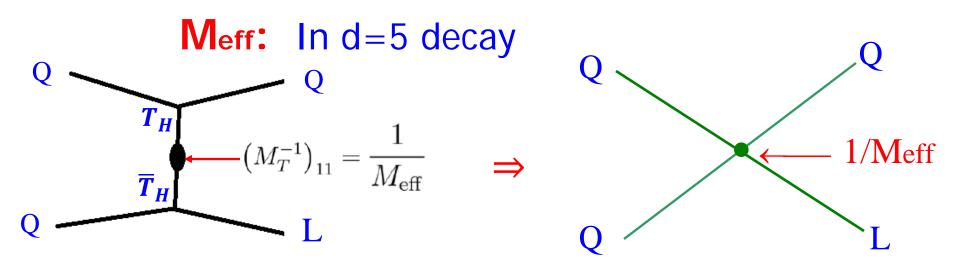
Matter: $\mathcal{U}_1^c \mathcal{U}_2^c = Y_1 Y_2 (4 + \tilde{p}^2)$, $\mathcal{Q}_1 \mathcal{Q}_2 = Y_1 Y_2 (1 + \tilde{p}^2)$, $\mathcal{E}_1^c \mathcal{E}_2^c = Y_1 Y_2 \hat{p}^2$

$$\tilde{p} = p$$
 $\tilde{p}^2 = \frac{|X_1|^2}{|Y_1|^2} = \frac{|X_2|^2}{|Y_2|^2}, \quad \hat{p}^2 = \tilde{p}^2 \left| 1 - \frac{M_{\Sigma}M_{C'}}{2X_1X_2} \right|$

Gauge:
$$M^2(X,Y) = g^2 a^2 \equiv M_X^2$$
, $M^2(X',Y') = M_X^2(1+p^2)$
 $M^2(V_{u^c,\bar{u}^c}) = M_X^2(4+p^2)$, $M^2(V_{e^c,\bar{e}^c}) = M_X^2 p^2$ $p^2 = \frac{4c^2}{a^2}$

3-matter + 1 vector superfield $\leftarrow \rightarrow$ N=4 SYM multiplet

Gauge β - function = 0 \leftarrow Great reductionof thresholds



In RG Equations \rightarrow

$$\frac{M_{D_1}M_{D_2}M_{D_3}}{M_{T_1}M_{T_2}M_{T_3}M_{T_4}} = \frac{9}{4M_{\text{eff}}\cos\gamma}$$

 $\cos \gamma \sim \tan \beta/60$

$$\alpha_{\rm U}^{-1}(\Lambda) = \alpha_i^{-1}(M_Z) - \frac{b_i}{2\pi} \ln \frac{\Lambda}{M_Z} + \Delta_{i,w}^{(2)} + \Delta_i^{\rm GUT}$$

Calculable Thresholds!

RG and Gauge Coupling Unification

$$\ln \frac{M_{\text{eff}} \cos \gamma}{M_Z} = \frac{5\pi}{6} \left(3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) - (\alpha_1^{-1} + \Delta_{1,w}^{(2)}) \right) - \ln \frac{4\kappa^{5/2}}{9} + \ln \frac{p}{\hat{p}}$$

$$\ln \frac{(M_X^2 M_{\Sigma})^{1/3}}{M_Z} = \frac{\pi}{18} \left(5(\alpha_1^{-1} + \Delta_{1,w}^{(2)}) - 3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) \right) + \frac{1}{6} \ln \kappa - \frac{1}{3} \ln \frac{p}{\hat{p}}$$

$$\kappa \equiv M_8/M_3 = 2 \qquad \qquad \text{SUSY spectrum} \Rightarrow \Delta_{i,w}^{(2)}$$

$$Fermion \ \text{sector} \Rightarrow \cos \gamma$$

$$(\alpha_3(M_Z)^{-1})^{centr.} = 1/0.1184 \qquad \text{Can be obtained}$$

$$\text{By } \frac{\hat{p}}{p} \sim 10^{-4} \qquad \qquad (Mx^2M_{\Sigma})^{1/3} \approx 10^{16} \ \text{GeV}$$

$$\text{Meff=few} \times 10^{19} \ \text{GeV}$$

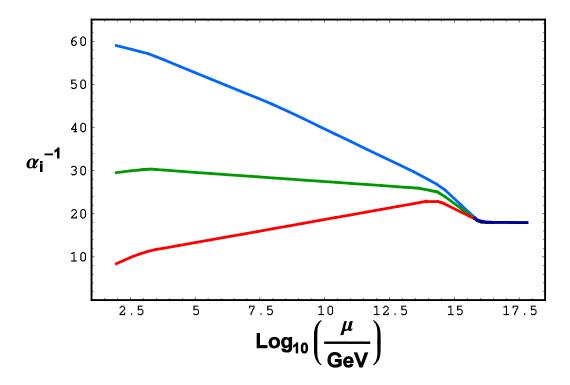
$$\text{Eliminating } \frac{\hat{p}}{p} \Rightarrow \text{ correlation:} \qquad M_{eff} \sim \frac{1}{M_X^3}$$

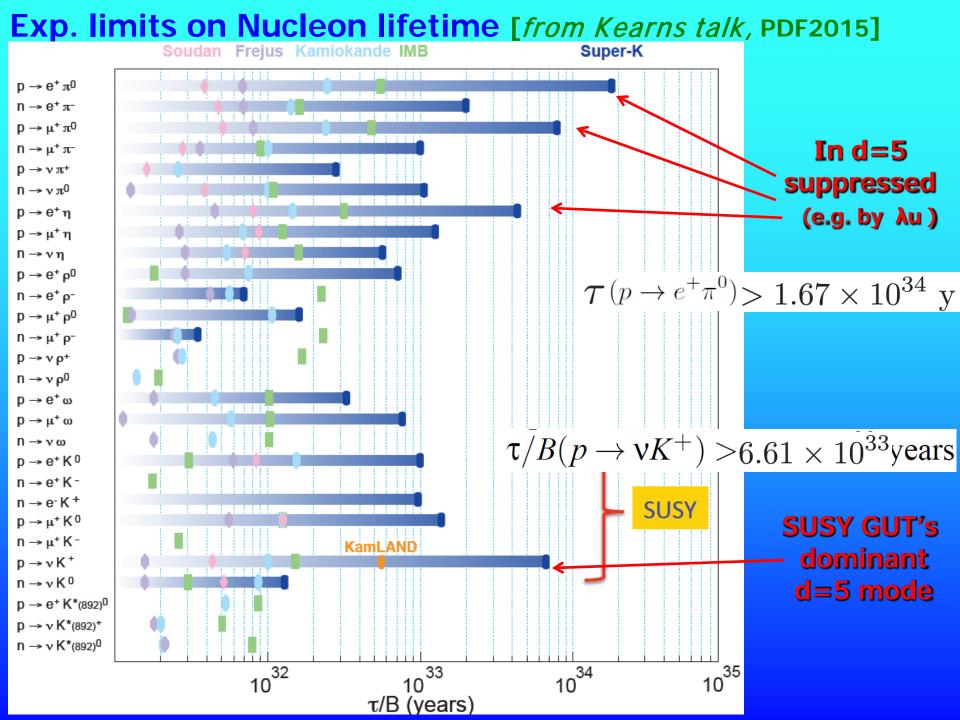
[Compare with SU(5) - Hisano, Murayama, Yanagida'93]

Large $M_{\rm eff}$ suppress Nucleon decay:

$$\Gamma_{d=5}^{-1}(p \to \bar{\nu}K^{+}) = 5.75 \cdot 10^{34} \text{yrs} \times \left(\frac{0.012 \text{GeV}^{3}}{|\beta_{H}|}\right)^{2} \left(\frac{6.34}{\bar{A}_{S}^{\alpha}}\right)^{2} \left(\frac{1.25}{R_{L}}\right)^{2} \left(\frac{M_{\text{eff}}}{1.4 \times 10^{20} \text{GeV}}\right)^{2} \left(\frac{835.7 \text{GeV}}{m_{\tilde{W}}}\right)^{2}$$

And compatible with coupling unification..





SUSY Spectrum

(Taking into account GUT thresholds)

Gauginos: $M_i = M_i^0 \frac{\alpha_G^0}{\alpha_G} \frac{m_{1/2}}{m_{1/2}^0}$

Squarks, $m_{\tilde{f}}^2 = (m_{\tilde{f}}^0)^2 + \Delta m_{\tilde{f}}^2$ sleptons:

Higgses: $m_{h_{u,d}}^2 \simeq (m_{h_{u,d}}^0)^2 + \Delta m_{h_{u,d}}^2$

Changes due to GUT thresholds: e.g. $\Delta m_{\tilde{q}_i}^2 \simeq \frac{m_{1/2}^2}{4\pi} \left(12\alpha_X \ln \frac{M_G}{M_X} - C_{\tilde{q}}^i \Delta I_i \right) - \frac{\delta_{i3}}{4\pi^2} I_{\tilde{q}_3}^{\lambda_t}$

Selecting Input: Such that have rad. EWSB, Higgs mass=126 GeV SUSY spectrum satisfy all LHC bounds

Several Examples with inverted squar/slepton masses:

(Inputs from Ref.

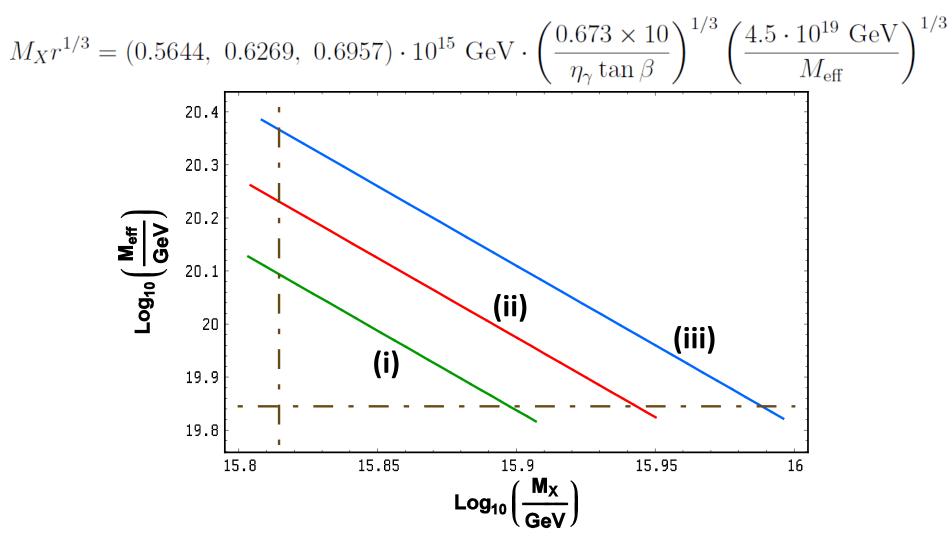
Our Output

M. Badziak, E. Dudas, M. Olechowski, S. Pokorski,

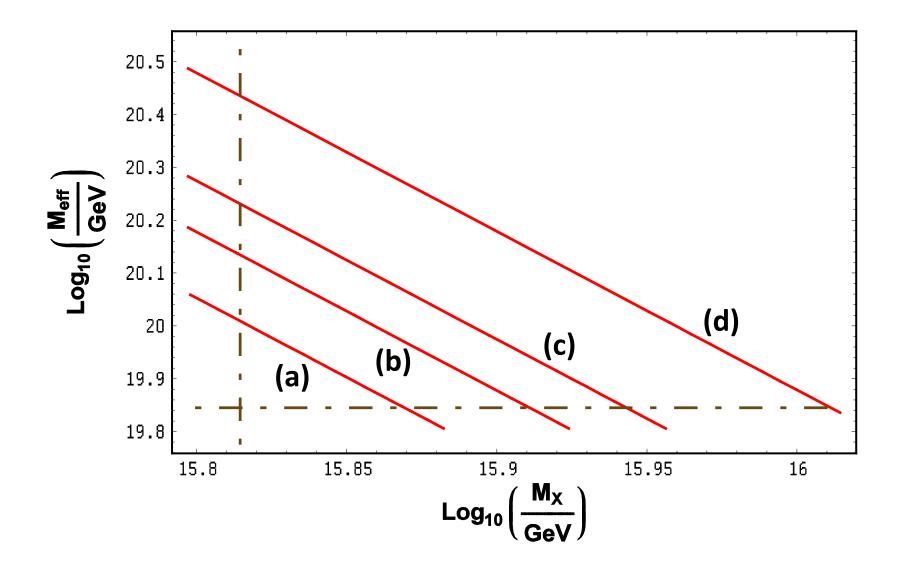
arXiv:1205.1675

	Spectrum $A_{SO(10)}$	Spectrum $B_{SO(10)}$	Spectrum $C_{SO(10)}$
μ	1080.4	759.6	631.6
M_A	3648.3	3236.3	3569.3
A_t	-2298	-2392	-2393
$m_{ ilde{B}}$	457	652.7	685
$m_{ ilde W}$	835.73	1295.3	1301.25
$m_{ ilde{g}}$	2537.1	3561	3587.1
Neutralinos : $m(\tilde{\chi}_i^0) \simeq$	(457 - 1081)	(653 - 1295)	(631 - 1301)
Charginos : $m(\tilde{\chi}_i^{\pm}) \simeq$	(836 - 1081)	(759 - 1295)	(631 - 1301)
$m_{\tilde{t}_{1,2}}$	503.15, 1701	$735.02, \ 1503.2$	540.8, 1525
$m_{\tilde{q}_{1,2}}$	17682	21122	22532
$m_{\tilde{u}_{1,2}^c}$	17681	21125	22538
$m_{\tilde{b}_{1,2}}$	$1847, \ 17688$	$1637.64, \ 21121$	$1696, \ 22534$
$m_{\tilde{d}_{1,2}^c}$	17688	21121	22534
$m_{\tilde{l}_{1,2}}$	17686	21077	22504
$m_{\tilde{l}_3}$	3435	3115	3477
$m_{\tilde{e}_{1,2}^c}$	17693	21081	22510
$m_{ au^c}$	3493.5	3227.6	3595.4
$m_h \simeq$	125	125	125

Correlation Between M_{eff} & M_X For spectrum B_{SO(10)}



Correlation for spectrum with $tan\beta = 10$ and r = 1/2500(i): $\alpha_3 = 0.1177$. (ii): $\alpha_3 = 0.1184$. (iii): $\alpha_3 = 0.1191$.



Correlation for spectrum with $tan\beta = 10$ and $\alpha_3 = 0.1184$. (a) r=1/1500. (b): r=1/2000 (c) r=1/2500 (d) r=1/4000.

→Correlation Between d=5 & d=6 Proton Decays and Upper Bounds on Lifetimes

$$\Gamma_{d=6}^{-1}(p \to e^+ \pi^0) \simeq 7.06 \cdot 10^{34} \,\mathrm{yrs} \left(\frac{0.012 \,\mathrm{GeV}^3}{|\alpha_H|}\right)^2 \left(\frac{2.7}{A_R}\right)^2 \left(\frac{5.12}{f(p)}\right) \left(\frac{1/20}{\alpha_X}\right)^2 \left(\frac{M_X}{10^{16} \,\mathrm{GeV}}\right)^4$$

$$\Gamma_{d=5}^{-1}(p \to \bar{\nu}K^{+}) = 2.36 \cdot 10^{34} \text{yrs} \left(\frac{0.012 \text{GeV}^{3}}{|\beta_{H}|}\right)^{2} \left(\frac{6.33}{\bar{A}_{S}^{\alpha}}\right)^{2} \left(\frac{1.25}{R_{L}}\right)^{2} \left(\frac{M_{\text{eff}}}{1.4 \cdot 10^{20} \text{GeV}}\right)^{2} \left(\frac{1295.3 \text{GeV}}{m_{\tilde{W}}}\right)^{2} \frac{1}{2} \frac{1}{M_{M}} \frac{1$$

+exp. Bounds & correlation, for
$$r_{min} = \frac{1}{2500}$$
 \rightarrow

Lead to:
$$\Gamma_{d=6}^{-1}(p \to e^{+}\pi^{0}) \lesssim \begin{cases} 1.66 \cdot 10^{35} \text{ yrs }, & \text{For } A_{SO(10)} \\ 4.65 \cdot 10^{34} \text{ yrs }, & \text{For } B_{SO(10)} \\ 4.76 \cdot 10^{34} \text{ yrs }, & \text{For } C_{SO(10)} \end{cases}$$

Upper Bounds on d=5 Lifetimes:

$$\Gamma^{-1}(p \to \overline{\nu}K^{+}) \lesssim \begin{cases} 2.88 \cdot 10^{35} \text{ yrs }, & \text{For } A_{SO(10)} \\ 4.26 \cdot 10^{34} \text{ yrs }, & \text{For } B_{SO(10)} \\ 4.41 \cdot 10^{34} \text{ yrs }, & \text{For } C_{SO(10)} \end{cases}$$

Potentially observable with improvement of exp. sensitivity by factor ~ 10

Comments:

 For calculating d=5 Proton decay, well defined Yukawa sector is important

We build Yukawa Sector with Q4 Flavor Symmetry (see blow)

2) Insure that Planck scale operators do not introduce large B-violation

Symmetries of the Yukawa sector suppress additional B-violation

Planck Scale induced d=5 p-decay is strongly suppressed

ANTICIPATING:

By model's symmetries: QQQL –type ops.

$$Z\overrightarrow{X}\overrightarrow{Y}^2\overrightarrow{16}^316_3, \ S\overrightarrow{Y}^2\overrightarrow{16}^216_3^2, \ Z^2S\overrightarrow{Y}\overrightarrow{16}16_3^3$$

Emerged terms $q_1 q_2 q_2 l_i / M_*$ have suppression $\lesssim \text{few} \times 10^{-9}$

Adequate suppression

Yukawa Sector with Q4 Flavor Symmetry

Q₄ → Interesting (predictive) Textures, Solves SUSY FCNC problem

Pouliot, Seiberg '93 (*) Babu, Kubo '05

 $\vec{q} \equiv (\hat{q}_1, \hat{q}_2) \qquad m_{\text{susy}}^2 \left(|\tilde{q}_1|^2 + |\tilde{q}_2|^2 \right)$

$$Q_4: \overrightarrow{16} \equiv (16_1, 16_2) \sim \mathbf{2}, \quad 16_3 \sim \mathbf{1} \qquad \overrightarrow{X}, \overrightarrow{Y} \sim \mathbf{2} - \text{Flavons}$$

(*):
$$\mathbf{1}' \times \mathbf{1}' = \mathbf{1}'' \times \mathbf{1}'' = \mathbf{1}''' \times \mathbf{1}''' = \mathbf{1} \qquad \mathbf{1}' \times \mathbf{1}'' = \mathbf{1}'''$$

 $\mathbf{1}'' \times \mathbf{1}''' = \mathbf{1}' \qquad \mathbf{1}''' \times \mathbf{1}' = \mathbf{1}''$
 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_2 \times \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}_2 = (x_1y_2 - x_2y_1)_1 \oplus (x_1y_1 + x_2y_2)_{\mathbf{1}'} \oplus (x_1y_2 + x_2y_1)_{\mathbf{1}''} \oplus (x_1y_1 - x_2y_2)_{\mathbf{1}''}$

Effective Yukawa Interactions are fixed by symmetries → Predictive

$$\begin{split} W_{\text{Yukawa}}^{(D)} &= 16_3 16_3 H + \frac{\overrightarrow{X}}{M_*} \overrightarrow{16} 16_3 H + \frac{SZ^2 A}{M_*^4} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} H + \frac{Z^3 C}{M_*^4} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} C' + \\ \frac{AC\overrightarrow{Y}}{M_*\langle Z\rangle^2} \left(\overrightarrow{16} \cdot 16_3 + 16_3 \cdot \overrightarrow{16}\right) C' + \frac{AC}{M_*^2\langle Z\rangle^2} (\overrightarrow{X} \overrightarrow{16}) (\overrightarrow{Y} \overrightarrow{16}) C' . \end{split}$$

$$\langle \overrightarrow{X} \rangle \simeq \left(\frac{M_*}{40}, 0\right) \qquad \langle \overrightarrow{Y} \rangle \simeq \left(\frac{M_*}{200}, 0\right)$$

Can be obtained by integrating heavy states

Mass Matrices

$$Y_{u} = \begin{array}{cccc} u_{1}^{c} & u_{2}^{c} & u_{3}^{c} \\ u_{1} & \begin{pmatrix} 0 & \epsilon' & 0 \\ -\epsilon' & 0 & \sigma \\ 0 & \sigma & 1 \end{pmatrix} \lambda_{t} & \begin{array}{cccc} d_{1}^{c} & d_{2}^{c} & d_{3}^{c} \\ 0 & \epsilon' + \eta' & 0 \\ -\epsilon' - \eta' & \xi_{22}^{d} & \sigma + \epsilon \\ 0 & \sigma + \overline{\epsilon} & 1 \end{pmatrix} \lambda_{b}$$

$$Y_{e} = \begin{array}{cccc} e_{1}^{c} & e_{2}^{c} & e_{3}^{c} \\ 0 & -3\epsilon' - \eta' & 0 \\ 3\epsilon' + \eta & 3\xi_{22}^{d} & \sigma + 3\overline{\epsilon} \\ 0 & \sigma + 3\epsilon & 1 \end{array} \right) \lambda_{b} \qquad \begin{array}{c} \nu_{1}^{c} & \nu_{2}^{c} & \nu_{3}^{c} \\ \nu_{1}^{c} & \nu_{2}^{c} & \nu_{3}^{c} \\ 0 & -3\epsilon' & 0 \\ 3\epsilon' & 0 & \sigma \\ \nu_{3} & 0 & \sigma & 1 \end{array} \right) \lambda_{t}$$

 $\lambda_b = \lambda_t \cos \gamma$

$$\sigma = 0.0508, \epsilon = -0.0188 + 0.0333i \quad \overline{\epsilon} = 0.106 + 0.0754i$$

Input:

$$\epsilon' = 1.56 \cdot 10^{-4}, \eta' = -0.00474 + 0.00177i, \xi_{22}^d = 0.014e^{4.1i}$$

At low energies: (perform RG running)

Input: $\tan \beta = 10$ $m_t(m_t) = 160 \text{ GeV}$ $m_\tau(M_Z) = 1.746 \text{ GeV}$ Output \rightarrow • $m_e = 0.51 \text{ MeV}$ $m_\mu = 105.66 \text{ MeV}$ $m_\tau = 1.776 \text{ GeV}$

•
$$m_u(2 \text{ GeV}) = 3.55 \text{ MeV}, \ m_c(m_c) = 1.15 \text{ GeV}$$

• $m_b(m_b) = 4.67 \text{ GeV}$ $m_d(2 \text{ GeV}) = 6.45 \text{ MeV}, \ m_s(2 \text{ GeV}) = 137.6 \text{MeV}$

• At M(Z) scale:

 $|V_{us}| = 0.225$, $|V_{cb}| = 0.0414$, $|V_{ub}| = 0.0034$, $|V_{td}| = 0.00878$

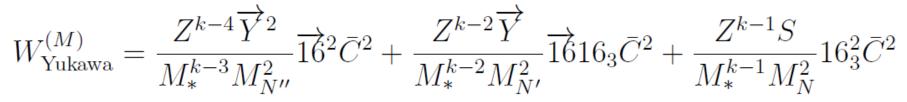
CP violation: •
$$\overline{\eta} = 0.334$$
, $\overline{\rho} = 0.12$
($\sin 2\beta = 0.663$) $\overline{\rho} + i\overline{\eta} = -V_{ud}V_{ub}^*/(V_{cd}V_{cb}^*)$

All in good agreement with experiments

*See also Babu, Pati, Rastogi Phys. Rev. D71 (2005) 015005. for similar results within SO(10)

Neutrino Sector

'Majorana' Couplings:



$$M_{R} = \frac{\nu_{1}^{c}}{\nu_{3}^{c}} \begin{pmatrix} c & 0 & 0 \\ 0 & b & a \\ 0 & a & 1 \end{pmatrix} M_{0} \quad \leftarrow \text{4 parameters}$$

$$M_{\nu D} = \begin{array}{ccc} \nu_{1}^{c} & \nu_{2}^{c} & \nu_{3}^{c} \\ \nu_{1} & 0 & -3\epsilon' & 0 \\ 3\epsilon' & 0 & \sigma \\ \nu_{3} & 0 & \sigma & 1 \end{array} m_{N}^{0}$$

$$m_N^0 = m_U^0$$

← All fixed

Neutrino Masses & Mixings

$$m_{\nu} = m_D \frac{1}{M_{\nu C}} m_D^T \rightarrow$$

• With input: $M_0 = 5.85 \times 10^{14} \text{ GeV}$ $c = 3.821 \cdot 10^{-8} e^{2.6857i}$ $a = 0.0515366 e^{-0.017947i}$, $b = 0.00265706 e^{-0.035831i}$

• Output: $\theta_{12} = 33.6^{\circ}$, $\theta_{23} = 38.4^{\circ}$, $\theta_{13} = 8.93^{\circ}$, $\delta \simeq \pi$ $\Delta m_{\rm sol}^2 = m_2^2 - m_1^2 = 7.5 \cdot 10^{-5} \text{ eV}^2$, $\Delta m_{\rm atm}^2 = m_3^2 - m_2^2 = 2.41 \cdot 10^{-3} \text{ eV}^2$ (Good agreement with data)

• Normal Hierarchy $\rightarrow (m_1, m_2, m_3) = (0.0016, 0.00881, 0.0499) \text{ eV}$

Summary

- Presented minimal/economical SUSY SO(10)
- Minimal Higgs System, Simple GUT Breaking and Natural DT Splitting to all orders
- Natural mu-term Generation
- Calculable GUT Threshold Corrections
- Correlation Between d=5 & d=6 Proton Decay Modes
- Obtained Upper Limits on $\Gamma_{d=6}^{-1}(p \to e^+\pi^0)$ and $\Gamma^{-1}(p \to \overline{\nu}K^+)$

Makes model testable by future experiments!

Thank You

Backup Slides

d=5 decay vs. Unification within SUSY SU(5)

$$M_{eff} \cos \gamma \rightarrow M_T \ \Box \ d=5 \ decay \ (p \rightarrow \overline{\nu}K^+)$$

Minimal renorm. SUSY SU(5) →

$$\begin{split} \Gamma_{d=5}^{-1}(p \to \bar{\nu}K^+) &\simeq 1.2 \cdot 10^{31} \,\mathrm{yrs} \times \left(\frac{0.012 \,\mathrm{GeV}^3}{\beta_H}\right)^2 \left(\frac{7}{\bar{A}_S^{\alpha}}\right)^2 \left(\frac{1.25}{R_L}\right)^2 \times \\ & \times \left(\frac{M_T}{2 \cdot 10^{16} \,\mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1.5 \,\mathrm{TeV}}\right)^4 \left(\frac{190 \,\mathrm{GeV}}{M_{\tilde{W}}}\right)^2 \,, \end{split}$$

For $\tau_{exp}(p \to \overline{\nu}K^+) \gtrsim 4 \cdot 10^{33} \text{ yrs.}$ One needs $M_T \gtrsim 3.6 \cdot 10^{17} \text{ GeV}$

How large can be M_T ?

Minimal renorm. SUSY SU(5) →

RG:
$$\ln \frac{M_T}{M_Z} = \frac{5\pi}{6} \left(3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) - (\alpha_1^{-1} + \Delta_{1,w}^{(2)}) \right)$$

 $\alpha_3(M_Z) = 0.12 \rightarrow M_T \simeq 7 \cdot 10^{14} \text{ GeV} \Longrightarrow \tau(p \rightarrow \overline{\nu}K^+) \simeq 1.5 \cdot 10^{28} \text{ yrs}$

 $M_T \gtrsim 2 \cdot 10^{16} \text{ GeV} \implies \alpha_3(M_Z) \gtrsim 0.132$ [\leftarrow also problem of unification]

In gross conflict with experiments:

 $\alpha_3^{exp}(M_Z) = 0.1176 \pm 0.002$ $\tau_{exp}(p \to \overline{\nu}K^+) \gtrsim 4 \cdot 10^{33} \text{ yrs.}$

One solution:
 SUSY SU(5) with high dim. Ops.→
 Large threshold corrections->

(Bajc, Perez, Senjanovic '02) $M_T^{} \geq 10^{17} \; GeV$

Considered SO(10) has no these problems

 μ -Term Generation by Triggered VEV $\sim m_{
m susy}$

Two categories of fields: $\Phi_i = (\hat{\Phi}_{\hat{i}}, \tilde{\Phi}_{\tilde{i}})$

 $V = \hat{\Phi}^{\dagger} \hat{M}_{\Phi}^{\dagger} \hat{M}_{\Phi} \hat{\Phi} + \tilde{\Phi}^{\dagger} \tilde{M}_{\Phi}^{\dagger} \tilde{M}_{\Phi} \tilde{\Phi} + \hat{\Phi}^{\dagger} \mathcal{M}_{\Phi} \tilde{\Phi} + \tilde{\Phi}^{\dagger} \mathcal{M}_{\Phi}^{\dagger} \hat{\Phi} + m_{susy} (\hat{\Phi}^{\dagger} \hat{\rho} + \hat{\rho}^{\dagger} \hat{\Phi})$

$$\langle \hat{\Phi}_{\hat{i}} \rangle = -m_{susy} \left[\hat{M}_{\Phi}^{\dagger} \hat{M}_{\Phi} - \mathcal{M}_{\Phi} (\tilde{M}_{\Phi}^{\dagger} \tilde{M}_{\Phi})^{-1} \mathcal{M}_{\Phi}^{\dagger} \right]_{\hat{i}\hat{j}}^{-1} \hat{\rho}_{\hat{j}}$$

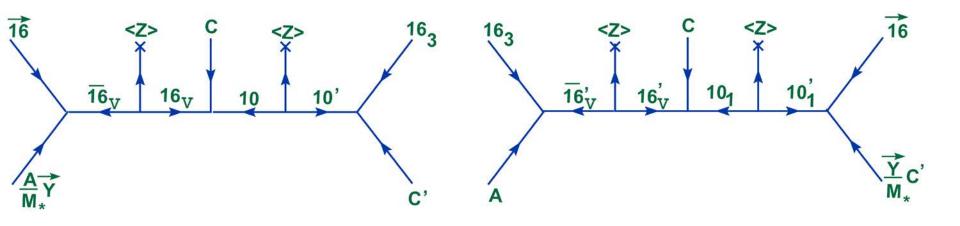
$$\langle \tilde{\Phi}_{\tilde{i}} \rangle = - \left[(\tilde{M}_{\Phi}^{\dagger} \tilde{M}_{\Phi})^{-1} \mathcal{M}_{\Phi}^{\dagger} \right]_{\tilde{i}\hat{j}} \langle \hat{\Phi}_{\hat{j}} \rangle \quad \leftarrow \mathsf{Triggered VEV} \quad \sim m_{\mathrm{susy}}$$

Applying for present SO(10):

$$\begin{aligned} \mathbf{Gauge choice} & Z = (z+Z_0)e^{\Omega} , \quad S = (s+S_0)e^{\Omega} , \quad \phi_C(\nu^c) = (c+\frac{\Delta}{\sqrt{2}})e^{\Delta'+\Omega} \\ \phi_{\bar{C}}(\bar{\nu}^c) = (c+\frac{\Delta}{\sqrt{2}})e^{-\Delta'} , \quad \phi_{C'}(\nu^c) = \phi'e^{\Delta'-\Omega} , \quad \phi_{\bar{C}'}(\bar{\nu}^c) = \bar{\phi}'e^{-\Delta'-2\Omega} \\ A(45) = \langle A(45) \rangle \oplus \frac{1}{\sqrt{24}}\eta_a \oplus \frac{1}{\sqrt{8}}\eta_b , \\ A(45) = \langle A(45) \rangle \oplus \frac{1}{\sqrt{24}}\eta_a \oplus \frac{1}{\sqrt{8}}\eta_b , \\ M_{\Phi} = \frac{\eta_b}{\eta_a} \\ \Delta \\ S_0 \begin{pmatrix} \phi' & \bar{\phi}' & \eta_b & \eta_a & \Delta & S_0 \\ 0 & 0 & \frac{a_{12C}}{M_{*2}\sqrt{8}} & -\frac{3a_{22C}}{M_{*2}\sqrt{8}} & \frac{\sqrt{2b_1c^2}}{M_{*2}\sqrt{6}} & c_1c \\ \frac{a_{22C}}{M_{*2}\sqrt{8}} & \frac{a_{12C}}{M_{*2}\sqrt{8}} & M_{\eta_b} & 0 & 0 & 0 \\ -\frac{3a_{22C}}{M_{*2}\sqrt{6}} & -\frac{3a_{12C}}{M_{*2}\sqrt{6}} & 0 & M_{\eta_b} & 0 & 0 \\ \frac{\sqrt{2b_2c^2}}{M_{*}} & \frac{\sqrt{2b_1c^2}}{M_{*}} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2b_2c^2}}{M_{*}} & \frac{\sqrt{2b_1c^2}}{M_{*}} & 0 & 0 & 0 & 0 \\ c_{2C} & c_{1C} & 0 & 0 & 0 & 0 \\ \end{pmatrix}$$

State identification: $\hat{\Phi}^T = (\phi', \bar{\phi}')$ $\tilde{\Phi}^T = (\eta_b, \eta_a, \Delta_0, S_0)$ VEV in B-L direction: $\langle \eta_b \rangle \simeq 3m_{susy}$ $\lambda_1 HAH' \rightarrow \lambda_1 \frac{\langle \eta_b \rangle}{\sqrt{8}} h_u h_d \sim m_{susy} h_u h_d$ $\mu \sim m_{susy} \sim \text{TeV}$

Generation of Effective Yukawa Couplings



This 16, 10-plet exchange gives Clebsch 3 for lepton vs. quark → Good relation

Q4 Breaking: No flat directions and massless modes

$$\langle \vec{X} \rangle = (x_1, 0) \quad \langle \vec{Y} \rangle = (y_1, 0) \qquad x_1, y_1 \neq 0$$

Additional Singlets: $S_1 \sim 1'$, $S_2 \sim 1$, $\hat{X}, \hat{Y} \sim 1''$

For VEV fixing and mass generation

$$W_{\text{Flavon}} = S_1 \left(\frac{Z^6}{M_*^6} \overrightarrow{X}^2 + \frac{1}{M_*^4} \overrightarrow{X}^6 \right) + S_2 \left(\frac{1}{M_*^2} \overrightarrow{X}^2 \overrightarrow{Y}^2 + \frac{1}{M_*^8} Z^{10} \right) + \hat{X} \overrightarrow{X}^2 + \hat{Y} \overrightarrow{Y}^2$$

$$F_Z = F_{S_{1,2}} = F_{\overrightarrow{X}} = F_{\overrightarrow{Y}} = 0$$

$$\langle S_1 \rangle = \langle S_2 \rangle = 0$$
 $x_1 \sim z \left(\frac{z}{M_*}\right)^{1/2} \sim \frac{M_*}{40} \quad y_1 \sim z^5 / (x_1 M_*^3) \sim \frac{M_*}{200}$

 $\hat{X}\overrightarrow{X}^2 + \hat{Y}\overrightarrow{Y}^2 \rightarrow \hat{X}X_1X_2 + \hat{Y}Y_1Y_2$

All states are heavy

Fermion mass/mixing RG from GUT scale down to low energies:

$$\frac{m_{u,c}}{m_t}\Big|_{m_t} = \eta_t^3 \frac{m_{u,c}^0}{m_t^0} \qquad m_u(2 \text{ GeV}) = 1.8m_u(m_t), \ m_c(m_c) = 2.11m_c(m_t)$$
$$\eta_t = 1.1097 \qquad \eta_t = \exp\left[\frac{1}{16\pi^2} \int_{M_Z}^{M_G} \lambda_t^2(\mu) d\ln\mu\right]$$

$$\frac{m_b}{m_\tau} = \eta_t^{-1} R_{b\tau} \frac{m_b^0}{m_\tau^0} \qquad R_{b\tau} = \exp\left[\frac{1}{3\pi} \int_{M_Z}^{M_G} (4\alpha_3(\mu) - \alpha_1(\mu)) \, d\ln\mu\right]$$

$$\frac{m_{d,s}}{m_b}\Big|_{M_Z} = \frac{m_{d,s}}{m_b}\Big|_{m_t} = 1.1159\frac{m_{d,s}^0}{m_b^0}$$

 $V_{\alpha\beta} = \eta_t \ V_{\alpha\beta}^0 \quad \text{for} \quad \alpha\beta = (ub, \ cb, \ td, \ ts) \qquad V_{\alpha\beta} = V_{\alpha\beta}^0 \quad \alpha\beta = (ud, \ us, \ cd, \ cs, \ tb)$

 $|V_{us}| = |V_{us}^{0}| \qquad |V_{cb}| = \eta_t |V_{cb}^{0}| \qquad |V_{ub}| = \eta_t |V_{ub}^{0}| \qquad \overline{\eta} = \overline{\eta}^0$

GUT thresholds in soft terms' RG: 1.

 $\lambda_t 16_3 \cdot 16_3 H \rightarrow \lambda_t \left((q_3 t^c + \nu_3^c l_3) H_u + (q_3 b^c + l_3 \tau^c) H_d + (\frac{1}{2} q_3 q_3 + t^c \tau^c + \nu_3^c b^c) T_H + (q_3 l_3 + t^c b^c) \bar{T}_H \right)$

$$16\pi^{2} \frac{d}{d \ln \mu} m_{\tilde{q}_{3}}^{2} = \beta_{\tilde{q}_{3}}^{0} + C_{\tilde{q}}^{i} \left((g_{i}^{0} M_{i}^{0})^{2} - (g_{i} M_{i})^{2} \right) - 12 \tilde{g}^{2} \tilde{M}^{2} \theta(\mu - M_{X}) + 4\lambda_{t}^{2} (2m_{\tilde{q}_{3}}^{2} + \tilde{m}_{T_{H}}^{2}) \theta(\mu - M_{T_{H}}) , \qquad C_{\tilde{q}}^{i} = \left(\frac{2}{15}, 6, \frac{32}{3} \right) , 16\pi^{2} \frac{d}{d \ln \mu} m_{\tilde{t}^{c}}^{2} = \beta_{\tilde{t}^{c}}^{0} + C_{\tilde{u}^{c}}^{i} \left((g_{i}^{0} M_{i}^{0})^{2} - (g_{i} M_{i})^{2} \right) - 16 \tilde{g}^{2} \tilde{M}^{2} \theta(\mu - M_{X}) + 2\lambda_{t}^{2} (m_{\tilde{t}^{c}}^{2} + m_{\tilde{\tau}^{c}}^{2} + \tilde{m}_{T_{H}}^{2}) \theta(\mu - M_{T_{H}}) , \qquad C_{\tilde{u}^{c}}^{i} = \left(\frac{32}{15}, 0, \frac{32}{3} \right) ,$$

GUT thresholds in soft terms' RG: 2.

$$\begin{split} HAH' &\to \frac{\lambda_1}{2} \left(h_u (\sigma_3 - \frac{3}{\sqrt{60}} S_{\Sigma}) h_d + T_H \sigma_Y h_d + h_u \sigma_X \bar{T}_{H'} \right) \\ &\quad \frac{\lambda_1}{\sqrt{20}} X_A h_u h_d + \frac{\lambda_1}{\sqrt{2}} h_u \left(\bar{e}_A^c H_u' + \bar{q}_A T_{H'} \right) \ . \\ \Delta \beta_{h_u}^{\lambda_1} &= \frac{3}{8} \lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{\sigma_3}^2 \right) \theta(\mu - M_{\sigma_3}) + \frac{3}{40} \lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{S_{\Sigma}}^2 \right) \theta(\mu - M_{S_{\Sigma}}) \\ &\quad + \frac{3}{4} \lambda_1^2 \left(m_{h_u}^2 + \tilde{m}_{\sigma_X}^2 + \tilde{m}_{T_{H'}}^2 \right) \theta(\mu - \max(M_{\sigma_X}, M_{\bar{T}_{H'}})) + \frac{1}{10} \lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{X_A}^2 \right) \theta(\mu - M_{X_A}) \\ &\quad + \lambda_1^2 \left(m_{h_u}^2 + \tilde{m}_{H_u'}^2 + \tilde{m}_{\tilde{e}_A^c}^2 \right) \theta(\mu - \max(M_{H_{u'}}, M_{\bar{e}_A^c})) + 3\lambda_1^2 \left(m_{h_u}^2 + \tilde{m}_{T_{H'}}^2 + \tilde{m}_{\bar{q}_A}^2 \right) \theta(\mu - \max(M_{T_{H'}}, M_{\bar{q}_A})) \end{split}$$

$$\begin{split} \Delta\beta_{h_d}^{\lambda_1} &= \frac{3}{8}\lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{\sigma_3}^2 \right) \theta(\mu - M_{\sigma_3}) + \frac{3}{40}\lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{S_{\Sigma}}^2 \right) \theta(\mu - M_{S_{\Sigma}}) \\ &+ \frac{3}{4}\lambda_1^2 \left(m_{h_d}^2 + \tilde{m}_{\sigma_Y}^2 + \tilde{m}_{T_H}^2 \right) \theta(\mu - \max(M_{\sigma_Y}, M_{T_H})) + \frac{1}{10}\lambda_1^2 \left(m_{h_u}^2 + m_{h_d}^2 + \tilde{m}_{X_A}^2 \right) \theta(\mu - M_{X_A}) \;. \end{split}$$