Recent Results From Reactor Neutrino Experiments

Stefan Wagner Centro Brasileiro de Pesquisas Físicas (CBPF) Rio de Janeiro

NNN15 10/30/2015

Neutrino Oscillations

Neutrino flavors are a superposition of mass eigenstates

Propagation of states leads to oscillation phenomenon

$$\begin{split} \mathsf{P}(\overline{\mathsf{v}}_{e} \to \overline{\mathsf{v}}_{e}) &= 1 - \sin^{2}(2\theta_{13})\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \cos^{4}(\theta_{13})\sin^{2}(2\theta_{12})\sin^{2}\left(\frac{\Delta m_{21}^{2}L}{4E}\right) \\ &+ \sin^{2}(2\theta_{13})\sin^{2}(\theta_{12})\left[\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \sin^{2}\left(\frac{\left(\Delta m_{31}^{2} - \Delta m_{21}^{2}\right)L}{4E}\right)\right] \end{split}$$

Neutrino Oscillations

Reactor neutrino experiments predestined for measuring θ_{13}

- Strongest man-made neutrino sources (good statistics)
- Pure source of antineutrinos (no flavor contaminations)
- Antineutrinos rather than neutrinos (no matter effects)

Tremendous effort: θ_{13} from unknown to best known in a few years Why are we interested in θ_{13} ?

- Measure CP violation in lepton sector (matter asymmetry in the universe)
- Determine mass hierarchy (\rightarrow future experiments; understanding of v mass)
- Understand the structure of mixing matrix (guide development of new theories)

3

Theories of θ_{13}

Reactor v experiments efficiently cleaned up the neutrino theory landscape!

From hep-ph:0608137 (2006)

The Reactor Neutrino Experiments

Daya Bay

Double Chooz

RENO

Experimental Concept

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27 \ \Delta m_{23}^2 (\text{eV}^2) \ \frac{L(\text{m})}{E(\text{MeV})} \right)$$

- Short baseline: reduce parameter correlations
- Two-detector-concept: reduction of systematics

Experimental Geometries

Detection Principle

Inverse Beta Decay (IBD):

 $\overline{\nu_e} + H \longrightarrow e^{\scriptscriptstyle +} + n_0$

Coincidence signature:

- Prompt: e⁺ energy deposition + annihilation
- Delayed: n thermalization + capture

Gd-loaded scintillator:

- High deexcitation energy (~8 MeV)
- Short coincidence window (~30 μs)
- \rightarrow very clean signature

Also n-H channel available:

- Higher statistics
- But larger BG contribution (2.2 MeV, 200 μs)

Rate-only or also spectral analyses

Generic Detector Design

"Standard" multi-volume organic liquid scintillators detector design

Spirou #3849, 2012

Outer Veto

Plastic scintillator for muon detection + tracking

Neutrino Target

• Gd-loaded LS for neutrino detection (n-Gd)

Gamma Catcher

• Unloaded LS for γ containment (E-scale)

Buffer Volume

• Mineral oil to shield inner volumes; PMTs

Inner Veto

• Rejection of muons and external radioactivity

Passive Shielding

Overburden + shielding

Design Comparison

Muon veto system

- LS inner veto (Double Chooz)
- Water cerenkov (RENO+DB)
- Plastic scintillator top (DC)
- RPC top (Daya Bay)
- Tyvek structures

Stefan Wagner, CBPF

NNN15

A. Cabrera

Background Contributions

- Accidentals: negligible for n-Gd, still important for n-H
- Correlated (stopping-μ, fast n): μ-induced, reduced with increasing overburden
- Cosmogenic β-n emitters (⁹Li, ⁸He): concern to all experiments
- Other backgrounds: Daya Bay removed calibration sources, RENO suffers from 252Cf contamination in post-2012 data (under control)
- All experiments significantly improved their BG understanding
- New methods developed to reject BG

New θ_{13} Results

Daya Bay

Double Chooz

RENO

Stefan Wagner, CBPF

12

NNN15

n-Gd analysis

Improvements over last result:

- 621 days of data
- Last 2 detectors operational (total exposure larger by factor of 3.6)
- Improved energy calibration
- Improved BG understanding

Background	Near	Far	Uncertainty	Method	Improvement
Accidentals	1.4%	2.3%	Negligible	Statistically calculated from uncorrelated singles	Extend to larger data set
⁹ Li/ ⁸ He	0.4%	0.4%	~50%	Measured with after-muon events	Extend to larger data set
Fast neutron	0.1%	0.1%	~30%	Measured from RPC+OWS tagged muon events	Model independent measurement
AmC source	0.03%	0.2%	~50%	MC benchmarked with single gamma and strong AmC source	Two sources are taken out in Far site ADs
Alpha-n	0.01%	0.1%	~50%	Calculated from measured radioactivity	Reassess systematics

Z. Wang, TAUP 2015

- Far/near relative measurement
- Precision of sin² 2 θ_{13} : 10% \rightarrow 6%
- Precision of $|\Delta m^2_{ee}|: 8\% \rightarrow 4\%$

 $|\Delta m^2_{ee}| = [2.42 \pm 0.11] \cdot 10^{-3} \text{ eV}^2$

```
[arXiv:1505.03456]
```


- L/E plot produced with n-Gd data
- Due to many different baselines in the setup
- Beautiful confirmation of oscillation interpretation

n-H analysis

BG reduction strategy:

- Prompt energy cut >1.5 MeV
- Prompt-delayed distance cut <0.5 m

217 days with 6 detectors
Rate-only analysis:
sin² 2 θ₁₃ = 0.083±0.018
[PRD 90, 071101 R (2014)]

New θ_{13} Results

Daya Bay

Double Chooz

RENO

Stefan Wagner, CBPF

17

NNN15

<u>n-H analysis</u>

Improvements over last nH result:

- Significantly larger data set (~240 days \rightarrow ~460 days)
- Multivariate BG rejection (ANN-based)
- Multiplicity Pulse Shape veto against FN

Stefan Wagner, CBPF

NNN15

<u>n-H analysis</u>

Improvements over last nH result:

- Significantly larger data set (~240 days \rightarrow ~460 days)
- Multivariate BG rejection (ANN-based)
- Multiplicity Pulse Shape veto against FN

<u>n-H analysis</u>

 \Rightarrow S/BG ratio improved by factor of ~20!

Rate+shape analysis: $\sin^2 2\theta_{13} = 0.124^{+0.030}_{-0.039}$

J. Castaño, WIN 2015 NNN15

Stefan Wagner, CBPF

T. Lasserre, TAUP 2015

Reactor-rate-modulation

- Compares IBD rates for different reactor powers
- Measurement of θ_{13} and BG rate at the same time
- Independent of neutrino energy distribution
- BG model independent measurement or using BG model to increase precision
- Combined Gd-III + H-III fit: $\sin^2 2\theta_{13} = 0.090 \pm 0.033$

BG rate = 7.29 ± 0.49 d⁻¹

2-detector phase

- Near detector completed
- Taking data since January 2015
- Prospect to lower 1σ -uncertainty to below 10%

n-Gd

J. Castaño, WIN 2015

Spectrum of spallation neutron captures following crossing muons

Stefan Wagner, CBPF

NNN15

New θ_{13} Results

Daya Bay

Double Chooz

RENO

n-Gd analysis

Improvements over last result

- Significantly larger data set (~400 days \rightarrow ~800 days)
- Relaxed Q_{max}/Q_{tot} cut: increases statistics, reduces shape uncertainty, more BG
- Improved energy scale and BG spectra (esp. important for R+S)

n-Gd analysis

Rate-only analysis: $sin^2 2\theta_{13} = 0.087 \pm 0.008_{stat} \pm 0.008_{sys}$ Uncertainty dominated by background contribution

Spectral analysis in progress

- Combined fit of $|\Delta m^2_{ee}|$ and θ_{13}
- BG spectra are leading uncertainty

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008_{stat} \pm 0.007_{sys}$

 $|\Delta m^2_{ee}| = [2.52 \pm 0.19_{stat} \pm 0.17_{sys}] \cdot 10^{-3} \text{ eV}^2$

Envisaged accuracy goals:

- $\sin^2 2\theta_{13} : 5\%$
- $|\Delta m^2 ee| : 4\%$ (within two years)

<u>n-H analysis in progress</u>

- Reduction of the uncertainty of accidental BG
- ≈400 days of data

Rate-only analysis:

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014_{stat} \pm 0.014_{sys}$

θ_{13} Summary

Stefan Wagner, CBPF

NNN15

New Results Beyond θ_{13}

Spectral Distortion

"5 MeV bump" observed in all three experiments (in ND and FD)

- Events have IBD characteristics
- Correlation with reactor power
- Appears in Gd and H analyses alike
- Measurement of θ_{13} is not affected!
- \rightarrow consistent with feature in PWR neutrino spectra

Spectral Distortion

Possible SM explanations are available [e.g. PR D 92, 033015 (2015)]

- Non-fission contributions
- Forbidden transitions
- U-238 fission daughters

- PWR neutron spectrum
- Possible error in original measurement at ILL

Need for new reactor neutrino experiments with different reactor types

Sterile Neutrino Results Talk by C. Giunti later this session

Search for light sterile vs performed by DB

- Relative measurements at various baselines (350, 500, 1600m)
- No signal observed, consistent with standard 3 oscillation
- Most stringent limit for $0.001 \text{ eV}^2 < \Delta m_{41}^2 < 0.1 \text{ eV}^2$

Stefan Wagner, CBPF

NNN15

Further Studies

Other physics results and development of analysis methods of general interest

- Background studies [1210.3748]
- Test of Lorentz violation [1209.5810]
- o-Positronium detection [1407.6913]
- Muon reconstruction [1405.6227, 1407.0275]
- Supernova neutrinos ?
- Nonstandard interactions
- Neutrino directionality
- Pulse shape analyses

Conclusions

Improved results for θ_{13} (all compatible)

- Daya Bay: $\sin^2 2\theta_{13} = 0.084 \pm 0.005 \text{ (n-Gd R+S)}, \text{ also } |\Delta m^2_{ee}| = (2.42 \pm 0.11) \cdot 10^{-3} \text{ eV}^2$
- Double Chooz: $\sin^2 2\theta_{13} = 0.090 \pm 0.033 (\text{RRM Gd}+\text{H})$
- RENO: $\sin^2 2\theta_{13} = 0.087 \pm 0.016 \text{ (n-Gd R)}$

Further improvements expected

- General improvements in data analysis and understanding of BG
- DC will start 2-detector phase
- RENO is preparing R+S analysis and n-H analysis

Physics beyond θ_{13}

- Discovery of spectral distortion by all three experiments
- No sterile neutrinos found in 0.001 eV² < Δm_{41}^2 < 0.1 eV² by DB
- Broad physics program possible

Thank you for your attention!