

Recent Neutrino Oscillation Results from T2K

Takahiro Hiraki (Kyoto University) for the T2K Collaboration

NNN15 October 30 2015

Outline

- The Tokai-to-Kamioka (T2K) experiment
- Highlights from v-mode joint fit
- Analysis overview
 - Neutrino flux prediction
 - Near Detector measurements
- Oscillation results in $\overline{\mathbf{v}}$ -mode
 - Event selection at far detector ($\bar{v}_{\mu}, \bar{v}_{e}$)
 - systematic uncertainties ($\bar{\nu}_{\mu}$, $\bar{\nu}_{e}$)
 - $\bar{\mathbf{v}}_{\mu}$ disappearance $(\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{\mu})$
 - $\bar{\mathbf{v}}_{e}$ appearance $(\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e})$

The T2K experiment

- off-axis beam to far detector (Super-K) and off-axis near detector (ND280)
 - generate narrow-band beam
 - enhance signal events at oscillation peak
 - reduce high energy neutrino backgrounds

- Beam power is increasing and achieved ~350 kW beam
- ✓ Integrated data so far:

7.09 \times 10²⁰ for v-mode, 4.04 \times 10²⁰ for ∇ -mode

✓ used data for this oscillation analysis
 off-axis ND : v̄-mode 5.82 × 10²⁰ POT, v̄-mode 4.30 × 10¹⁹ POT
 FD : v̄-mode 4.01 × 10²⁰ POT (all data so far)

Highlights from v-mode joint fit

we have to take more data

Beam stability

- ✓ Event rate is stable to ~1% level
- ✓ Beam direction is stable within much better than 1 mrad
 - 1 mrad shift corresponds to ~2% shift of peak energy of v flux

Analysis strategy

Neutrino flux prediction

- Larger "wrong-sign" component in ν-mode
 - especially in higher energy region
 - ~3% at peak energy (~600 MeV)
- ~9% uncertainty at peak energy

Near detector measurements

• \overline{v} -mode subsamples: CC1Track, CCNTracks (for $\overline{v}_{\mu}, v_{\mu}$)

momentum distributions

Near detector measurements

- v-mode subsamples: CC0 π , CC1 π^+ , CCother (v_{μ})
- finer categorization than \overline{v} -mode due to larger amount of data

ND analysis results

Event selection at far detector

- enhance CCQE 1-Ring μ /e event
- Event selection method in v̄-mode data is same as that in neutrino v-mode data

v_{μ}	v _e		
Beam timing selection			
Fully contained in fiducial volume (FCFV)			
1-Ring μ-like	1Ring e-like		
p _µ > 200 MeV/c	E _{visible} > 100 MeV		
# of decay electron ≤ 1	# of decay electron = 0		
	0 < E _{rec} < 1250 MeV		
	π^0 cut		

Far detector Super-Kamiokande

$\overline{v}_{\rm e}$ event selection at far detector

\overline{v}_{e} event selection (continued)

 $6: \pi^0 \text{ cut}$

divided into interaction modes

2γ invariant mass (MeV)

3 events observed

300

300

Systematic uncertainties

Values in brackets are uncertainties without ND measurements

1σ error on # of event prediction		$\overline{v_{\mu}}$	\overline{v}_{e}
ν flux and cross section	(flux) \times (cross section common to ND280)	3.4% (9.2%)	3.0% (9.4%)
	cross section (FD only, include \downarrow)	10.0 %	9.8%
	multi-nucleon effect on oxygen	9.5%	9.3%
Final or Secondary Hadronic Interaction		2.1%	2.2%
far detector		3.8%	3.0%
total		11.6% (14.4%)	11.0% (13.5%)

- Uncertainties from flux and cross section common to ND are decreased
- Dominant uncertainties come from cross section particular to FD
- Analysis of FGD2 (contain water target) will decrease these uncertainties

Muon antineutrino disappearance

- Search for CPT violation
- signals : $\overline{v_{\mu}} \rightarrow \overline{v_{\mu}}$, backgrounds : all the others include $v_{\mu} \rightarrow v_{\mu}$
- Use different θ_{23} , Δm_{23}^2 for neutrinos and antineutrinos
- fix oscillation parameters other than θ₂₃, Δm²₂₃
 use values from PDG2014 and past T2K v-mode results

Parameter	Value
Δm_{21}^2	$7.53 \times 10^{-5} \text{ eV}^2$
Δm^2_{32}	$2.51 \times 10^{-3} \text{ eV}^2$
$\sin^2 heta_{23}$	0.527
$\sin^2 2\theta_{12}$	0.846
$\sin^2 2\theta_{13}$	0.0967
δ_{CP}	-1.55
Earth matter density	$2.6 \mathrm{~g/cm^3}$
Mass hierarchy	normal
Baseline length	$295 \mathrm{~km}$

 Maximum Likelihood method considering number of events, shape (reconstructed energy), systematics

$\overline{\nu}_{\mu}$ disappearance result

- consistent oscillation parameters between v and \overline{v}
- compatible precision with other experiments

• Clear oscillation dip is observed

\bar{v}_{e} appearance

• expected number of events: depend on δ_{CP} and mass hierarchy

4.01 × 10 ²⁰ POT	δ _{CP} =-90°	δ _{CP} =0°	δ _{CP} =90°		
normal hierarchy	3.73	4.32	4.85		
inverted hierarchy	4.18	4.85	5.45		
\ 1.96 ν _µ →ν _e signal + 1.77 background events observed events : 3					

• Introduce a discrete parameter β

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \beta \times P_{\rm PMNS}(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$$

- β =0 hypothesis : no $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation (background only)
- β =1 hypothesis : nominal \overline{v}_e appearance

\bar{v}_{e} appearance result

independent analyses using different shape information

momentum-angle distribution angle (degree) reconstructed energy distribution

calculate $\Delta \chi^2$ (= -2log(L(β =0)/L(β =1))) for data and toy experiments

Then, compare them and calculate *p*-value

used information	data Δχ²	data <i>p</i> -value
# of event + p-θ	-1.16	0.335
# of event + E _{rec}	0.16	0.159

- we can not distinguish
 β=0 and β=1 hypotheses
 - more data needed

Summary

- T2K took 1.1×10^{21} POT data in total
- v-mode $v_e + v_{\mu}$ joint fit analysis with reactor constraint
 - first constraint to δ_{CP}
- First oscillation analyses with \overline{v} -mode are shown.
 - $\overline{\nu}_{\mu}$ disappearance
 - 34 μ -like antineutrino candidates are observed.
 - Consistent with v-mode results
 - \bar{v}_e appearance
 - 3 e-like antineutrino candidates are observed.
- These analyses are statistically limited
- Overall systematic uncertainties was presented by Bravar yesterday. https://indico.bnl.gov/contributionDisplay.py?contribId=40&confId=1282

Back up

$\overline{\nu}_{\rm e}$ reconstructed energy distribution

$\overline{\nu}_{\mu}$ disappearance result

