Resent result from Super-Kamiokande and SK-Gd project

M.Ikeda (Kamioka Observatory, U of Tokyo)

NNN2015@StonyBrook

Contents

- Introduction to Super-K
- Resent results
 - Proton decay
 - Atmospheric neutrinos
 - Solar neutrinos
- SK-Gd project
 - Physics motivation
 - EGADS
 - Plan

Super-Kamiokande

Proton decay searches in SK

- SK has the world's best sensitivities on proton lifetime:
 - large fiducial volume :22.5kt

 \sim 7.5 × 10³³ protons and \sim 6 × 10³³ neutrons

- Long live time : close to 5000days
- Latest results:
 - $p \rightarrow e^+ \pi^0 / \mu^+ \pi^0$
 - p→vK⁺

 $p \rightarrow e^+ \pi^0 / \mu^+ \pi^0$

Event features;

- e^+/μ^+ and π^0 are back-to-back (459 MeV/c)
- $\pi^0 \rightarrow 2 \gamma s$: all particles are visible.
- → Reconstruct proton mass and momentum.
- 850<M_{tot}<1050 MeV/c²and P_{tot} <250MeV/c are selected.
- Separate into two region to get better sensitivity.
 Ptot<100 MeV/c:

Free proton enriched. Almost BG free.

•100≤Ptot<250MeV/c:

Bound proton enriched.

Results of $p \rightarrow e^+ \pi^0$

- 306.3 kton·years (SKI-IV) (220kt·yrs in PRD 85, 112001 (2012))
- signal ε(P_{tot}<250MeV/c): ~40%
- total(SKI-IV) expected #BKG(P_{tot}<250MeV/c) :0.6 events #BKG: confirmed with K2K v beam data PRD 77,032003(2008)
- no data candidate

 $\tau/B_{p \to e\pi0} > 1.67 \times 10^{34}$ years (90% CL)

Results of $p \rightarrow \mu^+ \pi^0$

(analysis proceeds as with $e^+\pi^0$ with additional requirement of 1 Michel-e)

- 306.3 kton·yrs (SKI-IV) (220kt·yrs in PRD)
- signal ε(P_{tot}<250MeV/c): 30-40%
- total expected #BKG:
 - P_{tot}<100: ~0.05, 100≤P_{tot}<250: ~0.82
- no significant data excess $\tau/B_{p \rightarrow \mu \pi 0} > 7.78 \times 10^{33}$ years (90% CL)

Details for the 2 candidate

Event #1

(M_p, P_{tot}) : (902.5, 248.0)MeV Wall: 466.0cm # ring : 2 P_o: 374.9MeV/c P_u: 551.1MeV/c θ_{e-mu} : 157.9°

To

D

(M_p, P_{tot}) : (832.4, 237.9)MeV Wall: 351.6cm # ring : 2 P_e: 460.5MeV/c P_u: 391.3MeV/c θ_{e-mu} : 148.9°

(additional ring by manual fit \rightarrow $M_{\pi 0}$: 406MeV/c². See supplement)

	P _{tot} <100MeV/c	100≤P _{tot} <250MeV/c		
otal #BKG (SKI-IV)	~0.05	~0.82		
ata(SKI-IV)	0	2		
 Poisson prob. (≥2; 0.82): 19.9% 				

Result of $p \rightarrow v K^+$

Event features;

- K⁺ is invisible, stops and 2 body decay .
- A) $K^+ \rightarrow \nu \mu^+$ (236MeV/c) BR:65%
 - Check Pµ (monochromatic) distribution
 - Proton in ¹⁶O decays → De-excitation γ 6 MeV (Prob. 41%, not clear ring).

Tag γ to eliminate BKG.

- B) $K^+ \rightarrow \pi^+ \pi^0$ (205MeV/c) BR:21%
- π^+ is not clear ring.
- Search π^0 with PMT hits in backward.

No candidates and no excess in P_µ.
p→ νK⁺ Lifetime limit (90% CL)
combining Method (A) and (B):
> 6.6 x10³³ yrs @306 kton•yr

(260kt·yrs in PRD 90, 072005 (2014))

Benchmark searches and theoretical predictions

Oscillation analysis updates: $v_{\mu} \rightarrow v_{e}$ effect in atmospheric v

- Multi-GeV: resonant-like peak due to matter effect in Earth
 - appear in ether v or \overline{v} , and depends on mass hierarchy
 - θ_{23} octant changes size of resonance peak
- sub-GeV : flux normalization changes by CP phase δ_{CP}

Super-K atmospheric sample

- v_{μ} -> v_{τ} is dominant, but sensitive to other osc. parameters
- Interested in upward v_{μ} -> v_e containing sub-dominant effect

Oscillation fit result

- χ^2 scan for δ_{CP} , θ_{23} , Δm^2_{32} , MH. (θ_{13} is fixed for reactor).
- Super-K data favored normal hierarchy, but not significant ($\chi^2_{NH}-\chi^2_{IH}=-3.0$)

Fit (517dof)	x ²	sin ² θ13 (fix)	${oldsymbol{\delta}}$ CP	$\sin^2 \theta_{23}$	Δm ² 32
Normal	582.4	0.0238	240	0.575	2.6x10 ⁻³
Inverted	585.4	0.0238	220	0.575	2.3x10 ⁻³

Physics motivation of solar neutrino

- 1. large statistics and long time observation of solar neutrinos Obtain information inside of Sun.
- 2. Spectrum distortion (no yet observed) Poster : Muhammad Elnimr
 - "Up-turn" by MSW oscillation is expected around 3MeV
- 3. Day / Night flux asymmetry

Preliminary Results of solar neutrino observation

200

80

160

120

100

80

60

40

20

Year

Expected

Measured

16

12

10

14

(with 1σ band)

18

² 20

 $\Delta m_{21}^2 (10^{-5} eV)$

number

spot 140

- ~3σ difference in day and night
 - First direct indication of matter effect in Earth

Super K-Gd Beacom and Vagins PRL93,171101 (2004)

- Gd has large cross section for thermal neutron (48.89kb)
- Neutron captured Gd emits 3-4 γ ray in total 8 MeV
- We can tag $\bar{\nu}_{e}$ by using the delayed coincidence technique.

Physics targets:

- (1) Supernova relic neutrino (SRN)
- (2) Improve pointing accuracy for galactic supernova
- (3) Precursor of nearby supernova by Si-burning neutrinos
- (4) Reduce proton decay background
- (5) Neutrino/anti-neutrino discrimination (Long-baseline and atm nu's)
- (6) Reactor neutrinos

Theoretical flux prediction : 0.3~1.5 /cm2/s (17.3MeV threshold)

17

Theoretical flux prediction : 0.3~1.5 /cm2/s (17.3MeV threshold)

18

Search for SRN at Super-K

Search window for SRN at SK : From ~10MeV to ~30MeV

Now SRN search is limited by BG.

We need BG reduction by the neutron tagging!

19

Improvement for Proton decay

Neutron multiplicity for

If one proton decay event is observed at Super-K after 10 years Current background level: 0.58 events/10 years Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44%(w/o n) to 9%(w/ n).

EVALUATING Gadolinium's Action on Detector Systems 200 m³ tank with 240 PMTs

Transparency measurement (UDEAL)

15m³ tank to dissolve Gd

Gd water circulation system (purify water with Gd)

Transparency of Gd water with PMTs

The light left at 15 m in the 200m³ tank was ~75% for 0.2% $Gd_2(SO_4)_3$, which corresponds to ~92% of SK-IV pure water average.

Timeline of SK-Gd

- On June 27, 2015, the Super-Kamiokande collaboration approved the SK-Gd project.
- T0, T1, and T2 will be determined with T2K collaboration.

Summary

- Latest result from Super-K
 - Proton decay
 - No evidence so far.
 - longest lifetime limt: $\tau/B_{p \rightarrow e\pi 0} > 1.67 \times 10^{34}$ years (90% CL)
 - Atmospheric neutrinos:
 - there is ~1 σ preference in normal hierarchy ($\chi^2_{NH}-\chi^2_{IH}=-3.0$)
 - indicate $\delta_{CP} \sim -\pi/2$, but still CP conservation allowed
 - Solar neutrinos:
 - 3σ difference of day-night solar neutrino flux.
 - No correlation between Sun spot and solar neutrino flux
- SK-Gd
 - Aim to detect SNR using neutron capture by adding Gd
 - SK-Gd project approved by collaboration
 - Schedule will be determined with T2K

Summary of recent nucleon decay results in SK

Decay mode	∆(B-L)	Lifetime lower limit at 90% CL (years)	Paper (previous result)
p→e⁺π ⁰	0	(*) 1.67 × 10 ³⁴	(<u>PRD 85, 112001 (2012)</u>)
p→vK⁺	0(v), 2(v)	6.61 × 10 ³³	PRD 90, 072005 (2014)
$p \rightarrow \mu^+ \pi^0$	0	(*) 7.78 × 10 ³³	(<u>PRD 85, 112001 (2012)</u>)
p→e⁺/μ⁺(η,ρ,ω)	0	(0.04-4.2) × 10 ³³	<u>PRD 85, 112001 (2012)</u>
p→ µ⁺K⁰	0	1.6 × 10 ³³	<u>PRD 86, 012006 (2012)</u>
$n \rightarrow v \pi^0$, $p \rightarrow v \pi^+$	0	1.1×10^{33} , 3.9×10^{32}	<u>PRL 113, 121802 (2014)</u>
p →e⁺/μ⁺vν	0(vv), 2(vv,vv)	1.7/2.2 × 10 ³²	<u>PRL 113, 101801 (2014)</u>
p→e⁺/µ⁺X	?	7.9/4.1 × 10 ³²	arXiv:1508.05530, accepted by PRL
n→νγ	0(v), 2(v)	5.5 × 10 ³²	arXiv:1508.05530, accepted by PRL
pp→K⁺K⁺	2	1.7 × 10 ³²	<u>PRL 112, 131803 (2014)</u>
pp→π⁺π⁺, pn→π⁺π⁰, nn→π⁰π⁰	2	7.22 \times 10 ³¹ , 1,70 \times 10 ³² , 4.04 \times 10 ³²	<u>PRD 91, 072009 (2015)</u>
n p→(e⁺,μ⁺,τ⁺)ν	0(v), 2(v)	(0.22-5.5) × 10 ³²	arXiv:1508.05530, accepted by PRL
n-n oscillation	2	1.9 × 10 ³²	<u>PRD 91, 072006 (2015)</u>

(* will be published soon) 26

p**→**μ+ π0

		SK-I	SK-II	SK-III	SK-IV
Exp.(kton·yrs)		91.7	49.2	31.9	133.5
$p ightarrow \mu^+ \pi^0$					
(Free)	Eff.(%)	$16.4 {\pm} 0.8$	$16.0 {\pm} 0.8$	16.4 ± 1.0	20.1 ± 1.0
(P _{tot} <100)	BKG	$0.04 {\pm} 0.01$	< 0.01	< 0.01	$0.01{\pm}0.01$
	OBS	0	0	0	0
(Bound)	Eff.(%)	15.3 ± 2.5	15.3 ± 2.6	16.5 ± 0.8	18.2 ± 1.1
(100≤P _{tot} <250)	BKG	$0.33 {\pm} 0.09$	$0.14 {\pm} 0.04$	$0.12{\pm}0.03$	$0.23{\pm}0.07$
	OBS	0	0	0	2

Signal ? Background ? (1)

 $P\mu$ of Ev.1 is too large...

Pe after all cuts+2R cut Signal MC BKG MC

 θ of Ev.2 is too small...

Unfortunately, both events look like BKG: Ev.1: too large Pµ Ev2: Too small θ

Q. Is it consistent with expected background in each period ?

	SK1	SK2	SK3	SK4
BKG	0.36	0.15	0.12	0.24
Obs	0	0	0	2
Prob	69.8%	86.1%	88.7%	2.3%

One event until the first event: 35.8 % One event between the 1st and 2nd event: 3.8%

A. It could be happened.

Hand-fit for Ev.1

Take 3 rings μ: 468 MeV/c μ: 273 MeV/c e: 408 MeV/c Ptot: 413 MeV/c Mtot: 1107 MeV

Hand-fit for Ev.2

 $p \rightarrow v \ K^+ \rightarrow \mu^+ v_{\mu}$: Method 1) Nuclear deexitation γ , μ , and decay e⁺ Results

Number of hits in γ -tagged cluster ($t_{\mu} - t_{\gamma} < 75 \text{ ns}$)

 μ^+

	Effic (%)	BKG	Data
SK-I	7.9 ± 0.1	0.08	0
SK-II	6.3 ± 0.1	0.14	0
SK-III	7.7 ± 0.1	0.03	0
SK-IV	9.1 ± 0.1	0.13	0

Backgrounds from:

 $\begin{array}{l} 48\%:\nu \ p \rightarrow \nu \mathsf{K}^{*}\Lambda + \gamma, \Lambda \rightarrow p\pi^{-} \mbox{ (invis)} \\ 25\%:\nu_{\mu} n \rightarrow \mu p + \gamma \end{array}$

No observed candidates

PRD 90 (2014) 072005

Update of SK analysis (θ_{13} is free)

- Best fits of $\sin^2\theta_{13}$ are different from $\sin^2\theta_{13}$ -fixed analysis value.
- The effect from the change of θ_{13} is very small.

Fit with T2K published data (NH)

- Introduce constraint from modeled T2K data(6.57e20POT) for better sensitivity
- $\chi^2_{NH}-\chi^2_{IH}=-3.2$ (SK only : -3.0)
- SK and T2K favors $\delta_{CP} \sim -\pi/2$, but CP conservation (sin $\delta_{CP}=0$) allowed

Fit (585dof)	X ²	sin²θ13 (fix)	δср	$\sin^2 \theta_{23}$	Δm ² 32
Normal	651.5	0.0238	280	0.525	2.5x10 ⁻³
Inverted	654.7	0.0238	240	0.550	2.4x10 ⁻³