

Simulation & Neutrino Flux Studies for NOvA Experiment

Kuldeep Kaur Maan for NOvA Collaboration

NOvA:

NuMI: Neutrinos at the Main Injector (v_{μ}) , Off-Axis: narrow band beam (2GeV), ve Appearance

The NuMI Beam Line

A beam of 120 GeV protons is delivered from the Main Injector at Fermilab. These protons are then made collided against a graphite target. Secondary particles produced in the target are focused, thanks to two horns where a strong magnetic field is present. Of all these secondary particles, most important are **pions** and **kaons**, because they will decay in a muon and a **neutrino**. After being focused, they are left free to decay in a decay pipe. At the end of the decay pipe, remains a beam of neutrinos, muons and hadrons. The latter are then absorbed by a hadron absorber.

The experiment can count on two detectors, both located 14.6 mrad off the axis of the NuMI (Neutrinos at the Main Injector) beam line:

- The Near Detector (ND), 330 tons, 100m underground, 4.2m X 4.2m X 15.8m 214 planes 20,192 channels 1km from the source, used to measure composition of the un-oscillated beam
- Far Detector (FD), on surface, 14 kt, 15.5m X 15.5m X 60m, 896 planes 344,064 channels, 810km from the source, observes the oscillated spectra

NOvA uses two softwares to simulate the beam line:

- **G4NuMI**: a pure Geant4 simulation
- Flugg: uses the same G4NuMI geometry, but interfaces to Fluka (version 11.2b.6) for the actual particle physics. It gives best data agreement with neutrino experiments

Beam Transport Systematic Variations

- The 'Standard Flux' is based on FLUKA 2011.2b.6 (Flugg 2009-3d)
- A. Horn Current
- B. Beam spot size
- C. Horn1 & Horn 2 position
- D. Target position shift
- E. Shifted beam positions on Target
- F. B-field modeling in skin of horn: Exponential Magnetic field

The sensitivity of the oscillation studies critically depends upon precise prediction of un-oscillated v_{μ} , \bar{v}_{μ} ,

hadron production and the beam transport simulation * Needed are data-driven methods to constrain the uncertainties. The most important is the NOvA-ND data. Other constraints include MINOS, NDOS (Near Detector Prototype On Surface) data, and Hadron-

Uncertainties in hadron production based on NA49 data

Invariant differential cross section for an X_F of 0.1 and as a function of P_T for Pions & Kaons produced in p+C collisions at 158-GeV/c beam momentum on thin target.

Beam Transport Errors, including NA49 Hadroproduction Uncertainty on Reconstructed neutrino energy[GeV] in NOvA ND & FD for 6e20 POT

An example of Beam-Transport parameter variation:

Variation in # of vµ at NOvA ND &FD		
Model	Delta(%) ND	Delta(%) FD
Std	0	0
+1kA	-0.2	-0.16
-1kA	0.16	0.1
BposX+.5mm	-0.66	-0.68
BposX5mm	0.26	0.24
BposY+.5mm	0.13	0.18
BposY5mm	-0.35	-0.45
BmSptp +.2mm in X & Y	-0.77	-0.81
BmSptm2mm in X & Y	0.29	0.29
H1 +2mm X & Y	-0.44	-0.39
H1 -2mm X & Y	-1.7	-1.79
H2 +2mm in X & Y	-0.51	-0.47
H2 -2mm in X & Y	0.37	0.3
Exp B field	-4.3	-4.32
Target position +2mm	-0.08	-0.09
FTFP	-3.65	-3.76

$\delta(\%)$ for v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} is ~3% for ND & FD(1-3GeV), Energy variation for v_{μ} , \bar{v}_{μ} , v_{e} , $\bar{v}_{e} < 1\%$

Constraints using ND Data

- $\pi \rightarrow \nu_{\mu} + \mu$; 97% of ν_{μ} at the ND are from the π
- Use ND-Data ($E_v > 7.5$ GeV) to constrain K⁺ (for v_e)

The error band represents a ± 1 sigma shift of all beam systematics: including NA49 Hadroproduction Uncertainty, Spot size, Beam position on the target (X/Y), Target position, Horn current, Horn-positions, & the modeling of horn's B-field.

• Use ND-Data (0.5 $\leq Ev \leq 5$) to constrain $\pi^+ \leq \geq \mu^+$ (for v_e) i.e $\pi \rightarrow v_{\mu} + \mu$, $\mu \rightarrow v_{\mu} + e + v_e$

Future Plans:

- We will use Mipp Experiment thick target data for hadro-production uncertainties. K⁺ & π^+ Normalization from ND CC-Data
- Absolute flux from $v_e NC$ interaction
- Constraining the shape (relative-flux) using Low-Nu0 method

contact: kuldeepm@fnal.gov

www-nova.fnal.gov facebook.com/novaexperiment @novaexperiment

ENERG