Feasibility study on SUNLAB - Sieroszowice Underground Laboratory

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Małgorzata Harańczyk IFJ PAN, Kraków, Poland

In the years 2008 – 2011 several sites in Europe were considered as candidate hosts of the next generation large volume neutrino observatory within the LAGUNA FP7 design study. The SUNLAB - Sieroszowice Underground Laboratory in the Polkowice-Sieroszowice mine in Poland was discussed as one of them Physics-oriented studies, including sensitivity calculations focused on the delta CP measurement and performed using the GLOBES package for a large LArTPC detector at a distance of 950 km from CERN in a long baseline neutrino experiment, have been completed based on a grant from the Polish National Science Centre (DEC-2011/03/N/ST2/01971). The results of those studies are presented.

Independently, a project of a small low background underground laboratory has been prepared and included in the Polish Roadmap of Research Infrastructures. The SUNLAB laboratory will be placed 950 meters below the Earth's surface, in a salt-rock characterised by an extremely low level of natural a radioactivity. The concept of the laboratory and results of the measurements of natural radioactivity are also presented.

Geological profile of the Sieroszowice mine region:

- Good knowledge of geomechanical behaviour monitored by the KGHM mine for a long time. $\langle c \rangle$
- Thick and stable layers of salt and anhydrite rock over coper deposit.
- Water-bearing clay situated at a shallower level no water in anhydrite and salt strata.
- Large salt caverns at 950 m b.s. level

ZG Polkowice–Sieroszowice, KGHM Polska Miedź S.A. – copper mine in Lower Silesia region

950 m bs = 2200 m w.e. - cosmic muon flux: \sim 50 muons per day per m²

Large underground observatory

studied as long baseline experiment in 2011-2015

project of the GLACIER-LAr type cavern in anhydrite, studied within LAGUNA

Solution Located 600 m b.s., geologicaly stable and close to large shaft - convinient for construction.

Coupled with CERN neutrino beam – long baseline experiment with 950 km baseline

Low-background underground laboratory

on the Polish Roadmap for Reasearch Infrastructure 2015

Project of small laboratory in salt-rock strata in region of low mining activities.

Low level of natural radioactivity.

Experience gained during measurements in existing large underground salt caverns.

Simulation of the long baseline experiment

Measurements in the salt cavern in the Sieroszowice region.

Neutrino flux for optimised focusing Oscillation probability for a baseline of 950 system, at 100 km distance for 100 m² km. First oscillation maximum at 1.92 GeV. Normal and inverted hierarchy, $\delta(-\pi,\pi)$.

Number of v_eCC signal and background events for 5 years of neutrino run in 100 kton of LAr – TPC detector.

δCP measurement potential for SUNLAB

____ 100 kton **Normal Hierarchy** Inverted Hierarchy _____ 20 kton

the CPV discovery Sensitivity for presented as a function of the value of delta CP, assuming the known mass hierarchy and standard set of oscillation parameters. Assumed 10 years of data taking - 5 years for both, neutrino and antineutrino beams. Calculations done using GLOBES package. The results are

• Gamma spectrometry- *in situ* measurements

Gamma background measurements using two Ge spectrometers:

• Low-background high-purity detector (HPGe) manufactured at IFJ PAN

• Portable GR4020 Canberra spectrometer with and without lead shielding

1000 200

1500

Energy [keV]

2000

2500

24 hour long measurement in P1 salt cavern.

Only K-40 line comes from external source (salt), Uranium and Thorium series come from internal impurities - confirmed also by alfa spectrometry measurement.

Dose 8 months 1.8 nGy/h

Alfa spectrometry of salt rock samples

500

0.0165+-0.0030 Bq/kg **U-238:** 0.0225+-0.0030 Bq/kg **U-234:** 0.008+-0.001 Bq/kg Th-232: 4.0 +-0.9 Bq/kg K-40:

NNN 2015, Stony Brook University October 28-31, 2015

Acknowledgements:

This work was supported by the Polish National Science Centre grant DEC-2011/03/N/ST2/01971.

Low-background high-purity detector (HPGe) development and underground measurements were performed with the support of the National Centre for Research and Development, Poland (ERA-NET ASPERA/03/2011).