Physics Program of a
Water-based Liquid Scintillator Detector



Motivation

Long-baseline physics goals have gotten a lot of attention:

* Determination of mass hierarchy

* Search for CP violation

* Precision determination of (2,3) and (1,3) mixing parameters
* Tests of the 3-flavor paradigm

* Atmospheric neutrinos (applied to all of the above)

* Nucleon decay (primarily p->K* +antinu)

* Supernova burst neutrinos

It is an exciting list but---gasp!---it isn’t all of neutrino physics.




Motivation

Critical physics to do outside of LBL program:

* Majorana vs. Dirac

* Solar neutrinos

* Mixing angles and mass differences in (1,2) sector
* Geoneutrinos

* Diffuse supernova (anti)neutrino background

(Clearly this list is not exhaustive either)



Broadening the Program
A large-scale scintillation detector clearly has access to low-E physics:
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Broadening the Program

And big Cherenkov detectors to high-energy physics:
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Broadening the Program

But requirements for various physics goals are in tension:

Ovpp ~few ktonne Medium Very high Very High
Low E Solar vs  ~10 ktonne High Very high Very High
(< IMeV)

High E Solar vs  >50 ktonne High Low High

(> | MeV)

Geo/reactor ~10 ktonne Low High Medium
anti-vs

DSNB anti-ns >50 ktonne Low High Medium
Long-baseline vs > 50 ktonne Very high Low Low
Nucleon decay > 100 ktonne High High Low

(K+ anti-v)

* Low-energy physics wants a clean detector with a lot of light
* High-energy physics wants a big detector with direction reconstruction



Broadening the Program

But requirements for various physics goals are in tension:

Scintillation Detectors:

* Limited in size because scintillator absorbs light

* Have high scattering making direction reconstruction difficult
* Are expensive even if they could be made large

Water Detectors:

* No access to physics below Cherenkov threshold

* Low light yield makes E & vtx resolution poor even at ~10 MeV
* Are hard to make ultra-clean



Water-based Liquid Scintillator

Developed at Brookhaven National Lab
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High Cherlight/scintlight ratio makes directionality and background
rejection possible



Water-based Liquid Scintillator Detector

* New materials (water-based liquid scintillator)
+ New technologies (ultra-fast PMTs, LAPPD:s...) THEIA

+ Flexible design

May satisfy conflicting requirements.

Reference Design:

* 50-100 ktonnes WbLS

* Cylindrical geometry

* >80% coverage with photon sensors

* 4800 mwe underground

* Loading of various isotopes (Gd, Li, Te)
* Ability to deploy inner “bag”

High coverage with sensitive photodetectors makes up
for lower light yield than scintillator

Fast timing (or other tricks) distinguishes cherlight from
scintlight for direction reconstruction




Water-based Liquid Scintillator
Cherenkov/Scintillation Separation

* Long extinction length means detector can be large
* About 2 of Cherenkov light absorbed or scattered
* But separation of two components still possible
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OvBp with WbLS
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OvBp with WhbLS
SNO+ Approach
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Probability (A.U.)

— 25 pe/MeV
---- 50 pe/MeV
------- 90 pe/MeV

0'0-8 Cut required to '
o reduce 8B by 50%

0.04
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A. Mastbaum (Penn)

OvBB with WbLS

Directionality will allow
reduction of dominant 8B
background---size eliminates
backgrounds from PMTs and
walls.

cos 0
o . .
A 1% loading of "Te will
achieve |5meV criterion
AE  feo Mo b TYjy  mpp
(%) (%) (tons) (cts/MeV -ton-y) (1026 ¥) (meV)
SNO+4 4.5 0.3 0.16 775 0.85 75
SNO+ 3.6 3.0 2.4 260 6.6 27
CUORE® 0.2 — 0.74 0.01 0.76 78
CUORE 0.2 — 0.74 0.001 2.4 44
WhBLS 5.0 1.0 100 930 19.5 15
WhHLS 5.0 3.0 300 850 35.5 11

t=10y



Flexibility

Containment “bag” would allow:

Richer scintillator mixture

Loaded scintillator distinct from rest of volume
Simultaneous all water/all scintillator detector
Deployment depending on physics needs
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Flexibility
Containment “bag” would allow:
e Richer scintillator mixture
 |Loaded scintillator distinct from rest of volume

 Simultaneous all water/all scintillator detector
* Deployment depending on physics needs

60m




Ovpp at THEIA

Going further....

With 1000 pe/MeV (green) or more, can get 90% CL at 2.5 meV!
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Solar Neutrinos

* Broadband and mono-energetic, background-free v, beam

* Flux in some cases measured as precisely as ~“3%

* Flux in some cases predicted as precisely as 1%

* Matter effects are crucial and observable

* Source itself is interesting---and beam operations fits within FY2025

101 ¢ . |
.E ~ T T T T LB = s
on b — Bahcall-Serenelli 2005 121 —
pp-| £17% = i
1010 & Neutrino Spectrum (+10) [a) L I
': = ;
[ "TBe | z L i
10° ¢ N g [ svonct ]
— 103;— ,,IS’N_)‘: - ;);Tp‘_: go_g B f ]
v 101507 : 8 BOR—pp :
E P sy BOR—7Be $BOR—pep ]
= 106 & lejw"" | 20‘6 N Ga ]
5 L--"77  Be : 7 - {
B 108 ¢ +10.5% - B g
T 204 : C e .
104 ¢ ] ! -
E i ) - iSNO CC
/ ! p= 02 [ * SNO Phase I (D,0) €
108 F . I~ -
E a2 - © SNO Phase II (D,0+NaCl)
| o LSNO Phase Il (D,0+He) .
101 " . - /-/ 1 : " . s A -1
i [ | 10 1 ny
Neutrino Energy in MeV Energy GV)

Aren’t we done here?



Solar Neutrinos
Physics

Not really.

Important measurements still to make:

* Look for new physics in vacuum/matter transition region
* Understand solar system formation using...neutrinos!?

* Look for new stellar energy generation/loss mechanisms
* Keep watching



Observing MSW Phenomenology
Day/Night v, Asymmetry

AT SOLAR NEUTRINO ENERGIES:
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Solar vs with WbLS
Even better: “Salty water Cherenkov detectors” W.C. Haxton PRL 76 (1996) 10
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CNO and the Sun

The solar "'metallicity problem’

the ar. Only neutrinos, with their extremely
small interaction cross sections, can enable us
to see into the interior of a star and thus verify

j directly the hypothesis of nuclear energy genera=-
j tion in stars. —--John Bahcall, PR, (1964)

* Helioseismology convinced "everyone’ that SSM was correct
* Modern measurements of surface metallicity are lower than before

* Which makes SSM helioseismologic predictions wrong

But! CNO neutrinos tell us metallicity of solar core
—> Flux may differ by factor of 2 between old/new metallicity

(Maybe Jupiter and Saturn ‘stole’ metals from solar photosphere?
---Haxton and Serenelli, Astrophys.). 687 (2008)



Solar vs with WbLS

Low-energy solar vs also possible via CC and ES via Li loading:
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pp/pep and the Sun

Are all energy generation/loss mechanisms accounted for?

. . . . Exp. Theory
With luminosity constraint: Uncs.  Uncs.
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But without constraint: L, /L known only to 20-40%
— Unitarity’ test that integrates over a lot of new physics
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pp Measurements

BOREXINO spectacularly clean..first exclusive pp measurement!
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arXiv:1409.5864

Geoneutrinos

Electron antineutrinos from U, Th, K decay in the Earth

Assay the Earth by
looking at the
“antineutrino glow”

Current total geo-n exposure < 10 kt-yr
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Lot of work on this SUPemova Bursts
already done by LENA

* ~|2k events for |0kpc Supernova in 50 ktonne
* Scintillation light makes n tag easy for IBD

* Gd makes n tag even better (200 us becomes 20us)

Neutrino Percentage of Type of
Reaction Total Events Interaction
Ve+p—n+et 88% Inverse Beta
Ve + €~ —ve+e 1.5% Elastic Scattering
TVet+te —T.+e <1% Elastic Scattering
Vp+e  —uvgp+e 1% Elastic Scattering
ve +1°0 s e 4+1°F 2.5% Charged Current
v, +190 — et +16 N 1.5% Charged Current
vy +1%0 = v, + O*/N* +~ 5% Neutral Current

NC elastic scattering of p may also be visible by scintillation light.

Literally complementary to LAr (anti-v, vs.V,)
Better resolution than Super-K, allows some discrimination of signals



Lot of work on this Diffuse Supernova Antineutrino Background

already done by LENA

* Detect via IBD+neutron tag---very low background
* Scintillation light has higher efficiency than Gd+H,O
* Low NC background

= Atmospheric v+C = n + fragments

" WbLS allow rejection of recoils via Cher/Scint

" “Isotropy” of Cherlight also helps discrimination

Loading with CI or Li would allow v,_ detection in same detector.
* Unlikely to be as good at v_ as LAr unless single low-E
events are below LAr-TPC threshold.



Nucleon Decay with THEIA

Scintillation light allows observation of K+, as well as de-excitation
vs from “invisible”’decay modes.
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Sterile vs with WbLS

If “reactor anomaly” persists....

100

e |SODAR uses 8Li with 13 MeV 1w
endpoint

¢ Could potentially resolve v
oscillation pattern within single “5
detector
* Need 15% o and 50 cm o o1
N\\\
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Long Baseline Program with WbLS

“...the U.S. to_host g large water Cherenkov neutrino detector, as one of three additional high-
priority activities, to complement the LBNF liquid argon detector, unifying the global long-baseline

neutrino community to take full advantage of the world’s highest intensity neutrino beam.The
placement of the water and liquid argon detectors would be optimized for complementarity. This
approach would be an excellent example of global cooperation and planning” — P5 (Scenario C)

Seriously? What could a water(-based liquid scintillator)
detector possibly add to this!?




Long Baseline Program with WbLS

Challenges for photon-based detectors for long-baseline vs:
* Low-energy secondaries may be invisible (Cherenkov)
* No real tracking (scintillation in particular)

* Precision of vertex reconstruction limited
This leads to scintillation detectors focused only on low-energy vs...

...and Cherenkov detectors using

primarily quasi-elastic events... ...which for L=1300 km is non-optimal.
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Long Baseline Program with WbLS

Nevertheless...treating scintillation light as just a “nuisance”
that effectively degrades the coverage to SK Il levels:
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Long Baseline Program with WbLS

Nevertheless...treating scintillation light as just a “nuisance”
that effectively degrades the coverage to SK Il levels:

CP Violation Sensitivity Mass Hierarchy Sensitivity
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By itself, such a detector would be an interesting experiment,
though clearly not as powerful kt-per-kt with LAr-TPC.
E.Worcester (BNL)



Long Baseline Program with WbLS
Yet several ways in which VWbLS detetcor could make a big difference:

* Measurement dominated by quasi-elastics on O and H
Cross sections relatively easy to model
Already well-studied

* Mass could be increased if optics more water-like than scint-like
|50 ktonne roughly equivalent to 40 ktonne LAr

* Fast timing may make higher multiplicity events reconstructable
“Photon TPC” (Wetstein)

Makes WbLS and LAr-TPC more comparable kt-for-kt

* Scintillation light may provide additional particle ID
Asymmetric 7, decays have more “scintlight” than expected
from “Cherlight”
Hadrons also have “anomalous’ Cher/Scint ratio
Neutrons captures allow counting from low E gammas

* If beam is off-axis then second oscillation maximum will have
more flux



Summary

Broad program of physics possible with WbLS detector

But a lot remains to do to optimize program

Critical issue in US is whether WbLS can perform well $ for $
with LAr

If so, makes sense to enhance LBL program with a detector
capable of a broad program

Plenty of R&D, simulation, analysis left to do!



