ArgoNeuT and LArIAT: Status and Progress on Measurements Relevant for DUNE

Will Flanagan, University of Texas, on behalf of the ArgoNeuT and LArIAT Collaborations

Physics Motivation

v, spectrum (NH)

Events/Me/ 0.6 & ⊽. from u* Fit Region 34 kton LAr @ 1300 km 3 yrs v mode 80 GeV p beam, 1.2 MW 0.4 $sin^2(2\theta_{13}) = 0.09$ Signal, δ_{co} = 0^o ... Constr. Syst. Error 100 Best Fit (E>475MeV) 0.2 Events/0.25 GeV Signal, $\delta_{co} = 90^{\circ}$ Signal, $\delta_{co} = -90^{\circ}$ Events/MeV 50 /... CC CC Data - expected background Beam v, CC in²20=0.004. Am²=1.0eV³ sin²20=0.03, Am²=0.3eV² 0.1 0.0 -0.1 0.4 0.8 1.4 1.5 Reconstructed Neutrino Energy (GeV) E^{QE} (GeV)

- Thanks to the capability of LAr detectors, we have an opportunity to measure CP violation and neutrino mass ordering and search for new fundamental particles.
- This is an exciting time in physics with important implications!
- But we first need to measure neutrino nucleus cross sections (ArgoNeuT) and better understand interaction processes of charged particles on argon (LArIAT).

Will Flanagan (University of Texas)

ArgoNeuT Overview

- 175 L of liquid argon (47x40x90 cm³) is contained in the TPC.
- 500 V/cm electric field drifts electrons from ionization tracks to induction and collection wire planes.
- 3D reconstruction of tracks combining electron drift time and wire planes information.
- No light detection system in ArgoNeuT. This has been added as part of LArIAT upgrades.

ArgoNeuT Overview (II)

- Located in the NuMI beamline, upstream of the MINOS ND.
- Data collected from September 2009 to February 2010.
- (1.2)0.1x10²⁰ PoT collected in (anti)neutrino mode (<E>=4GeV).

ArgoNeuT Results (ν_{μ} and $\bar{\nu}_{\mu}$ CC-inclusive)

- First inclusive cross section measurement with an argon target.
- C. Anderson et al., PRL 108 (2012) ν_{μ} CC-incl. σ
- R. Acciarri et al., PRD 89, 112003 (2014) u_{μ} and $ar{
 u}_{\mu}$ CC-incl. σ

ArgoNeuT Results (CC Coherent π^{\pm} Production)

- This is the first measurement of CC coherent pion production on argon.
- This is also the first time that machine learning techniques (BDT) have been applied to LArTPC data analysis.
- R. Acciarri et al., PRL 113, 261801 (2014)

ArgoNeuT Results (Nuclear Effects)

- Nuclear effects were explored using the number of outgoing protons in pionless events.
- The 0π 2p⁺ events show an excess of back-to-back protons consistent with CC RES pionless reactions involving pre-existing SRC np pairs - R. Acciarri et al., PRD 90, 012008 (2014).

Will Flanagan (University of Texas)

ArgoNeuT Results (e/ γ Separation Using dE/dx)

- This measurement is critical for distinguishing ν_e CC events from NC events containing a π^0 .
- Paper is under review.

Will Flanagan (University of Texas)

ArgoNeuT Results (Neutral Current π^0 Study)

- Larger LAr detectors with better photon containment will be able to further improve this measurement.
- Energy corrections are applied which utilize ArgoNeuT's fine grain shower resolution.
- Paper is under review.

From ArgoNeuT to LArIAT

• Same great TPC, from a neutrino to a charged particle beam...

Will Flanagan (University of Texas)

From ArgoNeuT to LArIAT

Same great TPC, from a neutrino to a charged particle beam...

Will Flanagan (University of Texas)

From ArgoNeuT to LArIAT (II)

- The LArIAT beam is composed mainly of π^{\pm} , p^{+} , μ^{\pm} , e^{\pm} , and K^{\pm} .
- Momentum and beam polarity adjustable using tertiary beam magnets.
- 200 MeV to 2 GeV coverage allows us to focus on:
 - Matching DUNE/BNB momenta of interest
 - Stopping muons and pions
 - Kaons

LArIAT Upgrades

- Upgrades to the ArgoNeuT detector include:
 - Titanium beam window
 - New cold electronics
 - New wire planes
 - New tensioning bars and RC components
 - New HV feedthrough
 - Optical system including 2 PMTs, 3 SiPMs, reflector and wavelength shifting lining
 - Dedicated filling and purification system
 - This is all in addition to various contributions to our DAQ and beamline detectors!

LArIAT Data Collected So Far

- Our first track (Run 5215, Event 1) was recorded at 3pm on April 30, 2015.
- Since then we accrued 9 weeks of data (~44k spills), including both beam polarities, 3 secondary beam energies, and six tertiary beam settings!
- Average 5-10 events per spill

LArIAT Physics and R&D Goals

- Now that we have data, LArIAT physics goals include:
 - π -Ar interaction cross sections (total and exclusive channels)
 - Kaon identification (and possibly interaction cross section)
 - e/γ separation
 - Muon sign identification via decay vs capture
 - Geant4 validation
- LArIAT R&D goals include:
 - Establish relationship between energy deposited to charge and light collected, for stopping tracks of known energy
 - Optimization and development of PID, 2D & 3D event reconstruction
 - This is part of a common effort within the LAr community.

Will Flanagan (University of Texas)

NNN 2015 - ArgoNeuT and LArIAT

October 28 2015 15 / 22

LArIAT (π -Ar Cross Sections)

FIG. 9. Decomposition of the total π^* -nucleus cross section at 165 MeV. The lines are least squares fits to power laws.

- There are no measurements of π^{\pm} -40 Ar cross sections yet. See D. Ashery et al. Phys. Rev. C23, 2173 (1981).
- Pion cross sections within argon are a large source of systematic uncertainty for neutrino oscillation analyses.

Will Flanagan (University of Texas)

LArIAT (K[±] Identification)

- We are studying kaon reconstruction and identification.
- This is a critical measurement for future proton decay measurements in LAr.

LArIAT (Nuclear Effects and Final State Interactions)

• Above is an example of a $\pi^{\pm} \rightarrow \pi^{0}$ charge exchange candidate.

• Our goldmine of data will allow us to validate and tune Geant4 and Monte Carlo generators.

Will Flanagan (University of Texas)

LArIAT (Michel Electrons)

- μ capture and decay are critical for sign determination.
- Michel electrons also serve as an energy calibration source for both the TPC and light collection systems.
- Triggered on Michel candidates using a cosmic muon coinciding with a delayed electron.

Will Flanagan (University of Texas)

LArIAT (Michel Electrons)

Muon decay time spectrum in LAr

Will Flanagan (University of Texas)

LArIAT (Michel Electrons)

- Above is the Michel spectrum for muons which stop in the central 20cm of our TPC.
- Current analysis assume uniform visibility... adding position dependence to MC and detector systematics
- The above comparison with ICARUS is not an apples-to-apples comparison, but worth noting the similar smearing...
- Optimizing track/shower reconstruction for measurement of ionization energy spectrum

Will Flanagan (University of Texas)

Conclusions

- ArgoNeuT has measured many important neutrino nucleus cross sections (ν_{μ} and $\bar{\nu}_{\mu}$ CC-inclusive, CC coherent π^{\pm} production, nuclear effects).
 - Many more exciting measurements on the way (neutral current π⁰ cross section, e/γ separation using dE/dx)
- LArIAT continues this work in a complementary manner by measuring cross sections of charged hadrons.
 - Run-I (Completed: April 30, 2015 to July 7, 2015)
 - All detectors installed and operational
 - Focus is currently on Run-I analysis to inform data-taking for Run-II
 - Many exciting results are in the pipeline including π[±]-Ar cross sections, K[±] interactions in LAr, muon decay vs capture, e/γ experimental separation study, etc.
 - Run-II (Expected start: February 2016)
 - Currently completing small modifications for optimized performance
- Both ArgoNeuT and LArIAT measurements address one of the dominant systematic uncertainties towards measurements of CP violation, neutrino mass ordering, and new fundamental particles.

Will Flanagan (University of Texas)

Backup

ArgoNeuT Results (Charge Recombination)

- The data are well modeled by a Birks model and modified form of the Box model.
- An understanding of impurities is critical to future calorimetry in LAr.
- R. Acciarri et al., JINST 8 P08005 (2013)

ArgoNeuT Results (Back-To-Back Protons)

- Back-to-back protons provide an excellent probe of short range correlations and final state interactions in argon nuclei.
- CC pionless resonance reactions involving a SRC pair may produce back-to-back protons in the Lab frame (Left, Center).
- CC QE interaction on a neutron in a SRC pair is expected to produce back-to-back protons in the CM frame (Right).

Will Flanagan (University of Texas)

LArIAT (e/ γ Separation)

 We are comparing topological cuts with dE/dx discrimination of electrons and photons.