International Workshop for the Next generation Nucleon Decay and Neutrino Detector (NNN15)

Stony Brook, New York – October 2015

Status & plans of the WA105 6x6x6 m³ Double Phase Liquid Argon TPC at CERN neutrino platform

Sara Bolognesi (CEA Saclay) on behalf of WA105 collaboration

Double-phase Liquid Argon detector concept

- LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux
- OMEGAEcole Polytechnique/CNRS-IN2P3
- UPMC, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE)
- APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/ IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité
- IRFU, CEA Saclay, Gifsur-Yvette
- Université Claude Bernard Lyon 1, IPN Lyon

 Institut de Fisica d'Altes Energies (IFAE), Bellaterra (Barcelona)

- University of Glasgow
- University College London

CERN-SPSC-2014-013;

SPSC-TDR-004 (2014)

10 countries

22 institutes

120 physicists

- University of Jyväskylä
- University of Oulu
- Rockplan Ltd

- Horia Hulubei National Institute (IFIN-HH)
- University of Bucharest

- University of Geneva, Section de Physique,
- ETH Zürich

INFN-Sezione di Pisa

• CERN

 High Energy Accelerator Research Organization (KEK)

• CIEMAT

3

Faculty of Physics,

St.Kliment Ohridski

University of Sofia

 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

Years of R&D

WA105 is fully engineering prototype for

- long drift, very large charge readout plane, LAr purification, very high voltage, ...
- industrialization of mechanical and electronical solutions, assembling procedures, cryogenic operation, ...
- tracking and calorimetry in liquid argon to assess performances and to develop automatic software reconstruction
- measurement of charged pions and proton cross sections on Ar nuclei (input to model FSI in nuclear environment)

WA105 (LBNO-DEMO) 6x6x6m³

WA105

On CERN dedicated test-beam line in extension of North Experimental Hall

Extension of CERN North Experimental Hall for new beam line tilted magnets Counting rooms (East) Service - assembly zone Pit-B Pit-A P-351 WA105 Counting rooms (West) Cryogenics

6

New building under construction, to be delivered in July 2016

Instrumentation on the beam line

S.Bolognesi – NNN2015

Beam characteristics

- Energy range 0.4 -12 GeV (going below 0.4 GeV is challenging for power-supplies)
- Beam profile at 12 GeV

time samples (0.5 μs)

5000

4000

3000

300

5 GeV $v_{\rm u}$ interaction

400

500

600

view 0: strip number

100

200

300

400

view 0: strip number

samples (0.5 μs) 0000 0005

2000

1000

0

time

5 GeV π interaction

 μ, π, e at 100 Hz
 particle fluence (including secondaries)
 for 1GeV π beam

75% π survive (45% at 0.4 GeV)

Beam 1 GeV/c pions

S.Bolognesi – NNN2015

Charge signal

- $W_e = 23.6 \text{ eV} \rightarrow \text{mip produces} \sim 100 \text{k e- per cm} \rightarrow 60 \text{k e- after recomb.}$
- dirft velocity $\sim mm/\mu s$ (\rightarrow total drift time \sim few ms)
- Very long drift path \rightarrow diffusion and attachment
 - diffusion ~few mm with 1-0.5 kV/cm
 (→ pitch readout few mm)
 - O₂ pollution captures ionization electrons
 → charge attenuation
 - (\rightarrow impurity ~20 ppt O₂ needed)
- Double phase charge readout
 - high signal/noise thanks to avalanche multiplication in gas
 - 2 view (X,Y) of equal quality

0.2 ppb O2

20

DUNE

25 30 Drift path (m)

10

T600 MicroBoone

0.2

0.1

0.5 kV/cm

Double phase charge collection

Charge Readout Plane

CRP assembling and structure

- 3 points suspension system to minimize gravitational deformation → optimal design, built and tested
- Assembly and connection from inside the tank by lifting up-down the modules

Mod.2

Charge FE electronics

WA105 (7680 channels) test for DUNE (few 100k channels) → large scale readout system : need high-integration and low cost

- FE analog electronics at cryogenic temperature inside chimneys in the tank roof
 - \rightarrow guarantee accessibility of electronics
 - \rightarrow minimize noise (minimum at 100K)
 - \rightarrow minimize cabling

(Signal chimneys for 3x1x1 prototype)

S.Bolognesi – NNN2015

Since 2006 : 7 generations of ASIC protoypes

double slope regime: high gain up to 10 mip (best resolution) • \rightarrow lower gain to match dynamic range up to 40 mip

14

heat dissipation (in cryostat) <18 mW per channel \rightarrow <11.5 W per chimney

Charge DAQ

■ Micro-TCA standards → very compact and easily scalable architecture to manage large number of channels at low cost

- Special time distribution system → synchronization between nodes at 1ns (White Rabbit time and trigger system)
 FPGA card
- Gigabit Ethernet connection to a farm for event building merging with light readout

(w/o zero-suppression at 100 Hz ~15 Gb/s \rightarrow 1 PB/day data storage

w zero-suppression up to 10kHz : read beam data and cosmics)

FPGA card for online processing under test

Scintillation in LAr

- Peak of emitted light in Ar at **128 nm** → need coating to shift into PMT wavelength
- W_{γ} = 19.5 eV \rightarrow few 10⁷ γ per GeV one 8" PMT per sq. meter inside LAr (QE~10 % \rightarrow collection efficiency few 10⁻⁴)
- few 1000 PE/PMT dynamic range

- Scintillation signal shape :
 - fast component (singlet): T₁~10 ns (~23% for mip)
 - slow component (triplet): τ₂ ~1 µs (~77% for mip)
- Background from 7kHz cosmics
 - primary scintillation \rightarrow deadtime < 100 μs
 - continuous background of secondary scintillation (from avalanche in gas)

(S+B)/B ~ 50 (20 ns) \rightarrow 1 (1 μ s) use signal shape to isolate signal over background

PMTs under test

PMTs under test at CERN

Coating with TPB(*) by evaporation on PMT or on plexiglas plates

(* Tetraphenyl-butadiene)

Light readout electronics

FE card with « PARISROC » ASIC

 grouping 16 PMTs with single HV → minimize cabling connections and feedthroughs (in view of DUNE detector, low-cost and high-integration solutions for signal digitization of large equipped surfaces)

(inheriting from experience of Memphys large water-cherenkov for Laguna/LBNO)

- fast channel for trigger and t₀ of electrons drift (down to 10 fC with a fast shaper of 15 ns)
 - + slow channel with analogue memory for signal shape to improve calorimetry and distinguish primary scintillation from continuous secondary scintillation from cosmics (up to 50 pC with slow shaper 50-200ns)
- 50% chance of missing cosmics because of self-trigger dead-time
 → second mode of acquisition : continuous acquisition +/- 4ms

Cryostat and field cage

- Cryostat design :
 - inner size : 8x8x8 m³
 - average heat flow < 5W/m²
- Large drift cage sustaining a large potential difference (~500 kV)

(very low noise and stable power supply up to 600 kV)

Simulation, reconstruction and some physics measurements

- light and charge simulation
- track reconstruction (cosmics)
- calorimetry
- pion cross-section

Light simulation

- Fully detailed light response simulation parametrized with Lookup Tables
- Primary scintillation in LAr ~ 10⁻³ – 10⁻⁴ collection efficiency

• Secondary scintillation in GAr ~30% efficiency w.r.t LAr primary scinitlation

Time signal spread due to Rayleigh scattering

Space-charge effects (cosmics)

S.Bolognesi – NNN2015

Track reconstruction (cosmics)

Up to ~70 cosmics overlaped in the triggered drift window (from +/-4ms \rightarrow chopped tracks)

PRELIMINARY

Calorimetry

- need to keep under control calibration/uniformity and noise (cosmics)
- need detailed understanding of charge recombination, quenching/saturation for high density ionization
- \rightarrow improvement in shower modeling
 - $dE/dx \rightarrow$ identification of secondaries in shower
 - p_T balance in secondary vertices → understanding of 'invisible' energy : neutrinos, binding energies

Pion cross-section measurement

Pion final state interactions and secondary interactions in the detector: large systematics for oscillation analysis

(v₁ T2K systematics~3% (for 8% total syst.) \rightarrow more important for higher energy v beams)

 Can use primary and secondaries pions from CERN beam (primary rate up to 20 GeV ~100 Hz)

Planning timeline

See you in few years with beam events !

BACKUP

Status & plans of the WA105 6x6x6 m3 Double Phase Liquid Argon TPC at CERN neutrino platform

Sara Bolognesi (CEA Saclay) on behalf of WA105 collaboration

LEM characterization

Very large LEM never used in previous experiments: construction, operation and calibration are challenging !

50x50 box built at Saclay for LEM calibration by scanning with ⁵⁵Fe source

R&D Micromegas

R&D Anode

Anode with 'pixels' : 4x4 groups of 0.8 mm² electrodes

 \rightarrow charge equally shared on the 2 readout views with same signal shape

Considerations for PMT readout (reminder)

- Two paths:
 - PARISROC for self-trigger
 - − AD9249 \rightarrow digital data output
- ~50% chance of missing cosmics due to dead-time in self-trigger mode

Solution: two modes of acquisition

- Continuous acquisition of ± 4 ms on beam trigger
- Special studies using self-trigger mode (short O(us) time segments)
- Nominal digitizer is sampling at 40 MHz
 - Data volume for 36 ch reading 8ms : 15 Gbits/s ← too high for 10 Gbit link
 - Reduce outgoing volume rate by averaging multiple samples in FPGA on the frontend card
 - The optimal number to be averaged has to be cross-checked with simulation

Scintillation in LAr (1)

Scintillation light produced via formation of Ar excimer state :

- self-trapping Ar* + Ar
- recombination Ar⁺ + Ar + e⁻

 WA105 will allow also to test installation and operation of PMTs in LAr (heat dissipation, pressure on PMTs, LAr pollution, electric field distortion...)

