# DUNE Single Phase Liquid Argon TPC Prototyping at CERN and Fermilab



Jonathan Insler for the DUNE collaboration

NNN15 October 28, 2015



# **Deep Underground Neutrino Experiment**



- DUNE will observe a beam of neutrinos with ~2.5 GeV mean energy from Fermilab 1300 km through the earth to a far detector at the Homestake Mine in SD
- $v_{\mu}$  will be produced at Fermilab and measured with a Near Neutrino Detector 574 m from the target; a 40 kt FD at Homestake will measure  $v_{\mu}$  disappearance and  $v_{e}$  appearance

Goals of DUNE:

- Search for CP violation in neutrino sector
- Determine mass hierarchy of neutrinos
- Precision oscillation measurements
- Proton decay
- Supernova neutrinos

See DUNE@LBNF by Thomas Kutter for more details



### **DUNE Far Detector Prototypes**

- DUNE far detector at SURF will be 4 individual LAr-TPC modules of 10 kt fiducial mass
- DUNE FD will be largest single phase LAr-TPC ever constructed and presents multiple engineering and data processing challenges
  - Need to scale up cryostat, electronics
  - Cold digital electronics to minimize number of cables and cable length
- 35t and protoDUNE are prototype single phase LAr-TPC integrated detectors which will test FD design and components

# 35t Prototype Motivation

- 35t prototype at Fermilab will begin taking cosmic data this December for ~2 month run
- 35t will test new engineering solutions
  - Examine new LAr-TPC features in an integrated system
  - Characterize technology's performance
  - Provide data sample for reconstruction algorithms

## 35t Detector at Fermilab

#### Characteristics:

- Active volume of 2.5 m  $\times$  1.5 m  $\times$  2.0 m
- Two drift volumes on either side of APA, long (2.23m) and short (0.23m); electric field will drift electrons across volumes to APA
- Eight sets of wire planes
- Field cage constructed with FR4 printed circuit boards







#### 35t Status and Data Sample

- Installation is nearing completion
- Two month data run expected to begin in December
- We expect about 1 cosmic ray muon per 1.4 ms drift window (long drift distance of 2.23m)
- Cosmic ray counter (CRC) trigger rate will be about 60 Hz for vertical cosmics plus around 3 Hz for close to horizontal cosmics



### New Features of 35t Prototype

- Membrane cryostat
- Field cage with FR4 printed circuit board based construction
- Cold electronics (Front end and ADC ASICs) 1<sup>st</sup> use of ADC ASICs in cold!
- Wire planes with wrapped wires
- Photon detectors utilizing light guides to SiPMs
- Continuous readout, i.e. triggerless DAQ operation
  - CRCs will record  $t_0$  even in triggerless operation for time resolution of PD measurement

#### These features will be tested in 35t and will inform design of DUNE LAr-TPC far detector!

# 35t Phase 1 (2014) Membrane Cryostat Performance

Phase 1 test of membrane cryostat achieved LAr purity required for detector operations (next slide)

 Goal of >1.4ms electron lifetime exceeded!



# 35t Phase 1 (2014) Purity Measurements



# 35t Phase 1 (2014) Lessons Learned

- Leaks found in vacuum relief valve and dielectric-break seals leaked
  - Mitigated in Phase 1
- Purity monitors vibration-sensitive
  Redesigned for Phase 2
- Purity loss during filling and pump switching
  Filling procedure to be modified for large detector
  Pump will be moved outside future cryostat

# Technology RD Goals

- Build and test TPC with same design principles as projected DUNE FD
  - Multiple drift volumes
  - Integrated TPC and PDS can reconstruct full events and measure light
  - Wrapped wires on APAs conserve space taken by readout electronics and allow APA tiling to minimize dead space (~1.3% of active area)
- Hardware:
  - Evaluate performance uniformity of channel and cold electronics
  - Test detector grounding plan
- Software:
  - Fully reconstruct particle interactions in event display to test integrated system of whole detector
- Operation:
  - Test zero suppression algorithms for data taking in continuous readout

### 35t TPC Performance Evaluation

- Reconstruct straight tracks across gaps in wire planes via stitching
  - Examine edge effects of electric field near wire plane edges and gaps
- Test disambiguation of hit positions on wrapped wires



### **35t Photon Detector Goals**

- Test PD systems for use in DUNE FD
  - Slightly different PDS technologies are being used; 35t detector data will allow comparison of performance
- First test of light guide to SiPM photon detectors integrated with a TPC
- Event time resolution determined from PD flashes
- Use Michel electrons identified by TPC to optimize small signal detection and measure energy resolution in photon detectors



#### **35t Performance Measurements**

Measure basic performance parameters of LAr-TPC technology for DUNE FD design decisions:

- Signal/noise ratio for minimum ionizing particles (MIPs)
  - Reference performance of 9:1
- Drift electron lifetime in LAr cryostat from cosmic muon tracks
  - Expected performance: > 3 ms
- Time resolution of photon detector events

#### **35t Precision Measurements**

- Use Michel electrons,  $\pi^0$ s, and residual range of charged hadrons to determine energy resolution and scale
- Vary drift field to measure:
  - Ionization charge and scintillation light yields to check against models and data and characterize detector
  - Validate space charge model and field edge effects by measuring track distortions

# 35t Reconstruction and Event Displays

Reconstructed dQ/dx vs residual range for muons and decay electrons



Reconstructed Stopping Muon

DUNE

Stopping Muon in MC truth

### protoDUNE Motivation

- "protoDUNE" is the single-phase LAr-TPC to be built at CERN
- Measure, benchmark performance of full-scale <u>components</u>
  - Full size APAs, CPAs, photon detector panels
- Take measurements with test beam from CERN SPS
- Experience and data will inform DUNE FD development and design decision-making



# protoDUNE at CERN



protoDUNE is a LAr-TPC detector that will use full scale components and receive charged particle beam from CERN SPS

#### **Detector Engineering:**

- Quantify and benchmark full scale detector components' performance
- Develop installation and operation procedures for full scale components

#### Measurements:

- Examine systematic uncertainties of full scale LAr-TPC
- Use data to validate and tune MC simulations
- Test and further develop reconstruction and PID techniques

# protoDUNE Design

- Identical components as in DUNE far detector
- Drift distance will be adjustable to 2.5 m to diminish effects of space charge
- 35t space charge studies wi determine strategy



Full-scale APA design

# protoDUNE Parameters



- Total LAr mass of 700t with active mass of 400t
- 6 full size APAs with identical design to DUNE FD 10 kt module
- 15360 total readout wires in TPC
- 60 photon detector panels (dimensions 2.1×1.1m<sup>2</sup>) with total of 240 PDS readout channels
- 6 cathode plane assemblies (CPAs)

Dimensions: (transverse × parallel × height)

- Internal:  $8.5m \times 8.5m \times 8.6m$
- External: 10.6m × 11.7m × 10.9m
- Tank capacity: ~600m<sup>3</sup> (liquid volume ~0.96%)

#### protoDUNE Test Beam



Experimental hall EHN1 layout

- 60-80 GeV/c pion beam from T2 target will generate tertiary particles
- H4ext beamline will take particles to experimental area
- Particle types:  $e^{\pm}, \mu^{\pm}, \pi^{\pm}, K, p$
- Momentum range: ~0.5 7 GeV/c
- Momentum spread:  $\Delta p/p < 5\%$
- Multiple beam windows
- Beam rate: 200 Hz
- Beam position detectors:
  - Upstream and downstream of last bending magnets
  - Wire chambers and/or scintillating fiber trackers
- PID: TOF system for lower *p*, threshold Cherenkov detector for higher *p*

#### **Template Measurement Plan**

| Positive Sample                        |             |         |                 |                 |                      |               |
|----------------------------------------|-------------|---------|-----------------|-----------------|----------------------|---------------|
| Р                                      | # of Spills | Time    | # of $\pi^+$    | $\#$ of $\mu^+$ | # of $K^+$           | # of p        |
| (GeV)                                  |             | (hours) |                 |                 |                      |               |
| 0.2                                    | 900         | 11      | <b>15k</b>      | 180k            | $\approx 0$          | 160k          |
| 0.3                                    | 200         | 3       | 15k             | 30k             | $\approx 0$          | 50k           |
| 0.4                                    | 150         | 2       | 22k             | 18k             | $\approx 0$          | 32k           |
| 0.5                                    | 150         | 2       | 26k             | 12k             | $\approx 0$          | 38k           |
| 0.7                                    | 150         | 2       | 40k             | 10k             | $\approx 0$          | 45k           |
| 1                                      | 350         | 4       | 120k            | 10k             | $\approx 0$          | 65k           |
| 2                                      | 600         | 8       | 320k            | 10k             | 3k                   | 130k          |
| 3                                      | 500         | 6       | 290k            | <b>5</b> k      | 7k                   | 70k           |
| 5                                      | 1800        | 23      | $1\mathrm{M}$   | <b>5</b> k      | 5k                   | 270k          |
| 7                                      | 1200        | 15      | 660k            | 6k              | 3k                   | 120k          |
| Total                                  | 6000        | 76      | $2.5\mathrm{M}$ | 286k            | 18k                  | 1M            |
| Negative Sample                        |             |         |                 |                 |                      |               |
| Р                                      | # of Spills | Time    | $\#$ of $\pi^-$ |                 | $\#$ of $\mu^-$      |               |
| (GeV)                                  |             | (hours) |                 |                 |                      |               |
| 0.2                                    | 600         | 8       | 15k             |                 | 88k                  |               |
| 0.3                                    | 200         | 3       | 15k             |                 | 30k                  |               |
| 0.4                                    | 150         | 2       | 30k             |                 | 18k                  |               |
| 0.5                                    | 150         | 2       | 40k             |                 | 13k                  |               |
| 0.7                                    | 150         | 2       | 50k             |                 | 12k                  |               |
| 1                                      | 150         | 2       | 70k             |                 | 12k                  |               |
| 2                                      | 200         | 3       | 135k            |                 | <b>6</b> k           |               |
| Total                                  | 1600        | 22      | 350k            |                 | 180k                 |               |
| Electron Sample                        |             |         |                 |                 |                      |               |
| Р                                      |             |         | # of Spills     | Time            |                      | # of electron |
| (GeV)                                  |             |         |                 | (hours)         |                      |               |
| 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 5, 7 |             |         | 150  per bin    | 2 hours         | per bin 140k per bin |               |
| Total                                  |             |         | 1500            | 2               | 20 1.4M              |               |

- Response for multiple beam injection points and directions will be studied
- Projected measurement time is on the order of several weeks
- Estimates shown for only one angular configuration
- Red indicates rate-limiting numbers that define runs

### protoDUNE Beam Measurements

Refine DUNE FD measurements systematics assumptions by performing following measurements in protoDUNE:

- Shower calibration
  - Electromagnetic showers  $(\pi^0, \gamma, e)$
  - Hadronic showers  $(\pi^{\pm}, K^{\pm}, p)$
  - Test beam has known particle type and incoming momentum; will be used to characterize detector response for interacting hadrons in beam's energy ranges
- Angular dependence
  - Recombination with different angles between drift direction and (secondary) particles
- Bethe-Bloch parameterization of particle identification and charged particles for each particle at different angles and energies
- Reconstruction at all angles, validation of 2D vs. 3D reconstruction
- $e/\gamma$  separation

### protoDUNE Timeline and Goals



#### protoDUNE has been approved by CERN!

Milestones:

- 2016: TPC Production readiness review
- 2016/17: Engineering trial assembly
- 2017: Detector installation complete
- 2018: Commission detector and collect cosmics data

Goal: Collect initial beam data in 2018

# Summary

- DUNE is a long-baseline neutrino experiment that will observe neutrino oscillations with a 40 kt LAr-TPC underground far detector
- The 35t prototype at Fermilab is a smaller scale LAr-TPC using the same technology as the far detector
- 35t will take cosmic data over two months to test detector performance and provide data for reconstruction development
- protoDUNE is a prototype LAr-TPC to be constructed at CERN and will characterize full-scale FD components
- protoDUNE will receive beam from CERN SPS and perform measurements of different particles at different energies and angles
- Experience gained from and data taken by 35t and protoDUNE will inform DUNE FD design and technology development/decision-making process