Cosmology and neutrinos

Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia

NNN2015/UD2, Stony Brook, October 28 – 31, 2015

The concordance flat ACDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

The neutrino sector beyond ACDM...

There are many ways in which the neutrino sector can be extended beyond the standard picture. Neutrino dark matter

- **Masses** larger than 0.06 eV. ۲
 - $\Omega_{v,0}h^2 = \sum \frac{m_v}{94 \, eV} = ??$ No reason to fix at the minimum mass.
 - Laboratory upper limit $\Sigma m_v < 7 \text{ eV}$ from β -decay endpoint.
- More than three flavours. $N_{\rm eff} \neq 3??$ ٠
 - Sterile neutrinos and discrepancies potentially solved by them?

This talk

Hidden interactions •

Neutrino-neutrino, neutrino-dark matter, neutrino-dark energy.

Measuring neutrino masses with cosmology...

Free-streaming neutrinos...

For most of the observable history of the universe neutrinos have significant speeds.

Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes in an expanding universe:

→ Cosmological neutrino mass measurement is based on observing this freestreaming induced potential decay at $\lambda << \lambda_{FS}$. You've all seen this one...

 $P(k) = \langle |\delta(k)|^2 \rangle$

But the CMB contains information on m_{ij} too...

Potential decay happens anyway, even in ACDM, whenever the universe is not completely by nonrelativistic matter.

 It is good for probing neutrino masses because O(0.1–1) eV-mass neutrinos become nonrelativistic around recombination.

 \rightarrow Changes the "matter" content, and hence the scale and time dependence of the potential decay.

But the CMB contains information on m_y too...

Can also try to **reconstruct the intervening matter distribution**.

Use **4-point correlation** of observed map to infer the unlensed image.

- \rightarrow Reconstruct deflection angle
- \rightarrow Construct lensing potential map

Can also try to **reconstruct the intervening matter distribution**.

Use **4-point correlation** of observed map to infer the unlensed image.

- \rightarrow Reconstruct deflection angle
- \rightarrow Construct lensing potential map

Galactic North

Galactic South

Wavenumber, k [h Mpc⁻¹]

Adding low-redshift, non-CMB data...

Two types: geometry vs shape

- **Geometric** (not directly sensitive to neutrino mass):
 - Type la supernova
 - Baryon acoustic oscillations ("wiggles") [Most robust]
- **Shape** (directly sensitive to neutrino mass):
 - Galaxy power spectrum
 - Cluster abundance
 - Lyman alpha forest

Adding low-redshift, non-CMB data...

Two types: geometry vs shape

- **Geometric** (not directly sensitive to neutrino mass):
 - Type la supernova
 - Baryon acoustic oscillations ("wiggles") [Most robust]
- Shape (directly sensitive to neutrino mass):
 - Galaxy power spectrum
 - Cluster abundance
 - Lyman alpha forest

Planck TT+TE
+EE+lowP+**BAO**
$$\sum m_{v} < 0.17 \text{ eV} (95\% \text{ C.L.})$$

+lensing $\sum m_{v} < 0.23 \text{ eV} (95\% \text{ C.L.})$

Pre- vs Post-Planck constraints... ^CDM+neutrino mass (7 parameters)

Pre- vs Post-Planck constraints... ^CDM+neutrino mass (7 parameters)

Pre- vs Post-Planck constraints... ^CDM+neutrino mass (7 parameters)

Matter power spectrum (normalised to smooth spectrum)

The take-home message...

- Formally, the best "party-line" minimal (7-parameter) upper bound on Σ m_v is still hovering around 0.2—0.3 eV post-Planck2.
 - Marginally better than Planck 1 (0.25 eV).
- The bound has however become more robust against uncertainties relative to Pre-Planck bounds.
 - Less nonlinearities in BAO than in the matter power spectrum.
 - Does not rely on local measurement of the Hubble parameter...
 - ... or on the choice of lightcurve fitters for the Supernova la data.
- **Dependence on cosmological model** used for inference?

Model dependence: parameter degeneracies...

- We **do not** measure the neutrino mass *per se*, but rather its **indirect effect** on the clustering statistics of the CMB/large-scale structure.
 - It is **not impossible** that other cosmological parameters could give rise to similar effects (within measurement errors/cosmic variance).

Model dependence: parameter degeneracies...

- We **do not** measure the neutrino mass *per se*, but rather its indirect effect on the clustering statistics of the CMB/large-scale structure.
 - It is **not impossible** that **other cosmological parameters** could give rise to **similar effects** (within measurement errors/cosmic variance).

What Planck has to say about this issue?

- I couldn't find anything in the Planck2 papers...
- However, from V1 (March 2013):

Planck1 + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) + baryon acoustic oscillations

ACDM+neutrino mass
(7 parameters)
$$\sum m_v < 0.25 \text{ eV} (95\% \text{ C.L.})$$
Best minimal boundDropping assumption
of spatial flatness: $\sum m_v < 0.32 \text{ eV} (95\% \text{ C.L.})$ \square

 \rightarrow Some degradation, but still in the same ball park.

• Similar degradation if the number of neutrinos is allowed to vary (more later).

A fourth neutrino??

It doesn't even have to be a real neutrino...

Any particle species that

- decouples while ultra-relativistic and before $z \sim 10^6$ •
- does **not** interact with itself or anything else after decoupling ۲

will behave (more or less) like a neutrino as far as the CMB and LSS are concerned.

Smallest relevant

. .

scale enters the horizon

$$\sum_{i} \rho_{v,i} + \rho_{X} = N_{eff} \left(\frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} \right)^{Neutrino}$$
Three SM neutrinos
$$= (3.046 + \Delta N_{eff}) \rho_{v}^{(0)}$$

$$= (3.046 + \Delta N_{eff}) \rho_{v}^{(0)}$$
Corrections due to non-instantaneous decoupling, finite temperature effects, and flavour oscillations

Post-Planck2 N_{eff} ...

Planck-inferred N_{eff} compatible with 3.046 at better than 2σ .

 $\Lambda CDM + N_{eff}$ (7 parameters)

 $N_{\rm eff} = 3.13 \pm 0.32$ *Planck* TT+lowP; $N_{\rm eff} = 3.15 \pm 0.23$ *Planck* TT+lowP+BAO; 68% C.I. $N_{\rm eff} = 2.99 \pm 0.20$ *Planck* TT, TE, EE+lowP; $N_{\rm eff} = 3.04 \pm 0.18$ *Planck* TT, TE, EE+lowP+BAO.

ACDM+neutrino mass+N_{eff} (8 parameters)

$$\frac{N_{\text{eff}} = 3.2 \pm 0.5}{\sum m_{\nu} < 0.32 \text{ eV}} \right\} 95\%, Planck \text{TT+lowP+lensing+BAO}.$$

Looks like the end of the N_{eff} story...

But note this...

The N_{eff} -H₀ degeneracy...

A larger $N_{\rm eff}$ does bring the Planck-inferred H₀ into better agreement with most direct measurements.

Implications for the short baseline sterile neutrino...

"3+1 scenario"

 $\mathbf{v}_{\alpha} = \sum_{i=1}^{4} U_{\alpha i} \mathbf{v}_{i}$

$$\sin^2 2\theta_{\rm SBL} \equiv 4 \left| U_{e4} U_{\mu4} \right|^2$$
$$\sim 10^{-2}$$
$$\Delta m_{\rm SBL}^2 \equiv \Delta m_{14}^2$$
$$\sim 0.5 \text{ eV}^2$$

Kopp, Machado, Maltoni & Schwetz 2012

The SBL sterile neutrino can be thermalised in the early universe via a combination of oscillations and scattering (of the active neutrino).

Hannestad, Hansen, Tram & Y³W 2015 also Hannestad, Tamborra & Tram 2012 and works of Abazajian, Di Bari, Foot, Kainulainen, etc. from 1990s-early 2000s

Planck TT + lowP + lensing + BAO

Can we get around these constraints?

The SBL sterile neutrino is problematic for cosmology only because it is produced in abundance in the early universe.

- \rightarrow If production can be **suppressed**, then there should be no conflict.
- Some possible mechanisms:
 - Suppress the effective mixing angle with new matter effects in the early universe:

New physics required

- A large lepton asymmetry (L>>B~10⁻¹⁰); L ~ 10^{-2} will do. Foot & Volkas 1995
- Hidden sterile neutrino self-interaction Hansen & Tram 2014, Hannestad, Saviano et al. 2014, Archidiacono et al. 2015
- A low reheating temperature (T_R < 10 MeV) → incomplete thermalisation of even the SM neutrinos.
 May run into problems with baryogenesis and dark matter production.

Future sensitivities...

ESA Euclid mission selected for implementation...

Launch planned for 2020.

- 6-year lifetime
- 15000 deg² (>1/3 of the sky)
- Galaxies and clusters out to z~2
 - Photo-z for 1 billion galaxies
 - Spectro-z for 50 million galaxies
- Optimised for weak gravitational lensing (cosmic shear)

ESA Euclid mission selected for implementation...

(weak gravitational lensing of galaxies)

But everything I am about to say applies also to similar surveys such as LSST.

Forecasted sensitivities...

C

A lot of numbers floating around at the moment (depending on whose papers you read)... Dark energy EoS

Data	$10^3 imes \sigma(\omega_{ m dm})$	$100 imes \sigma(h)$	$\sigma(\sum m_{ u})/\mathrm{eV}$	$\sigma(N_{ m eff}^{ m ml})$	$\sigma(w)$
CS	1.864	0.638	0.064	0.081	0.0310
cg	1.121	0.655	0.020	0.086	0.0163
csg	0.885	0.324	0.012	0.056	0.0083
csgx	0.874	0.292	0.012	0.055	0.0065
csg_b	1.400	0.529	0.042	0.068	0.0207
csg_bx	1.390	0.482	0.042	0.068	0.0186
csgx (7-parameter)	0.181	0.071	0.011	-	-
csg_bx (7-parameter)	0.354	0.244	0.022	-	-
	Data cs cg csg csg csgx csgb csgbx csgx (7-parameter) csgbx (7-parameter)	Data $10^3 \times \sigma(\omega_{dm})$ cs 1.864 cg 1.121 csg 0.885 csgx 0.874 csgb 1.400 csgt (7-parameter) 0.181 csgb x (7-parameter) 0.354	Data $10^3 \times \sigma(\omega_{dm})$ $100 \times \sigma(h)$ cs 1.864 0.638 cg 1.121 0.655 csg 0.885 0.324 csgx 0.874 0.292 csgb 1.400 0.529 csgb x 1.390 0.482 csgx (7-parameter) 0.181 0.071 csgb x (7-parameter) 0.354 0.244	Data $10^3 \times \sigma(\omega_{dm})$ $100 \times \sigma(h)$ $\sigma(\sum m_{\nu})/eV$ cs1.8640.6380.064cg1.1210.6550.020csg0.8850.3240.012csgx0.8740.2920.012csgb1.4000.5290.042csgb x1.3900.4820.042csgs (7-parameter)0.1810.0710.011csgb x (7-parameter)0.3540.2440.022	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

c=CMB (Planck); g=galaxy power spectrum; s=cosmic shear; x=shear-galaxy cross-correlation

- **Optimistic linear galaxy bias**: $\sigma(\Sigma m_{y}) \sim 0.01 \text{ eV}$ •
- Very pessimistic linear galaxy bias: factor of 3.5 deterioration... •

Good enough to resolve the mass spectrum/hierarchy?

Unfortunately not, even in the most optimistic scenario.

• In fact we can model the mass spectrum any way we like and the data cannot tell.

3+0 = 3 (equally) massive + 0 massless

fiducial value within 1σ .

- Precision cosmological observables can be used to "measure" the absolute neutrino mass scale based on the effect of neutrino free-streaming.
- Existing precision cosmological data already provide strong constraints on the neutrino mas sum.
 - No significant formal improvement between the best pre-Planck, Planck1 and Planck2 upper bounds (at least not for the minimal 7-parameter model).
 - But the **Planck2** bound is arguably more robust against nonlinearities and is completely independent of other CMB measurements (e.g., WMAP).
- The fourth neutrino??
 - No evidence at all. But a 2.5 σ discrepancy between Planck and direct measurements of H₀ remains.