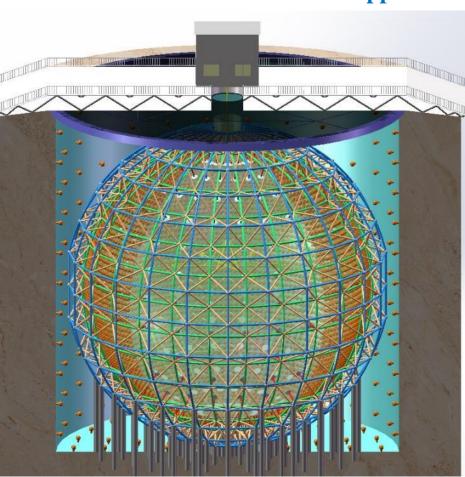


Status of JUNO


Zeyuan Yu on behalf of JUNO collaboration Institute of High Energy Physics, China

NNN15@Stony Brook University, Oct. 30th

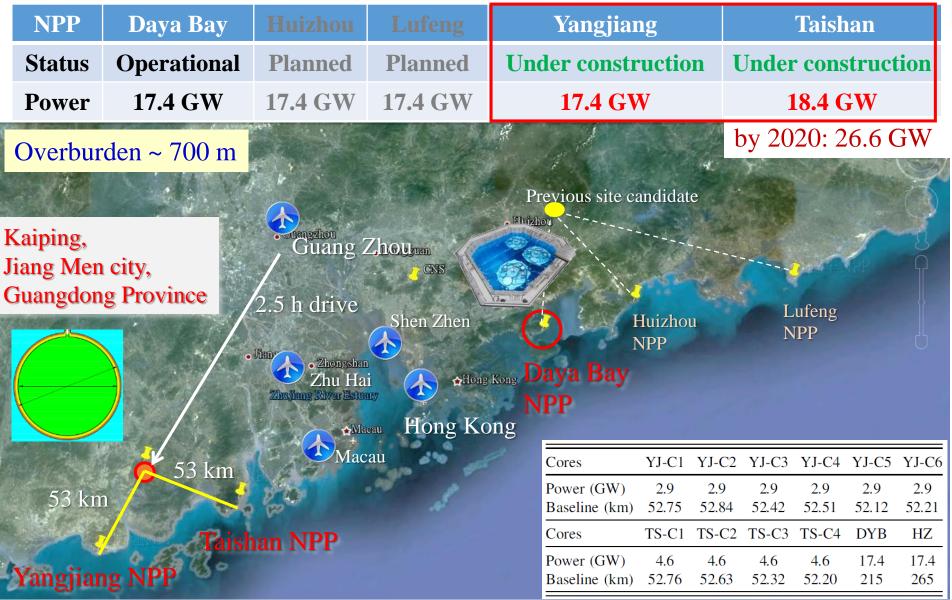
The JUNO Experiment

Jiangmen Underground Neutrino Observatory Approved at Feb. 2013, ~330M\$.

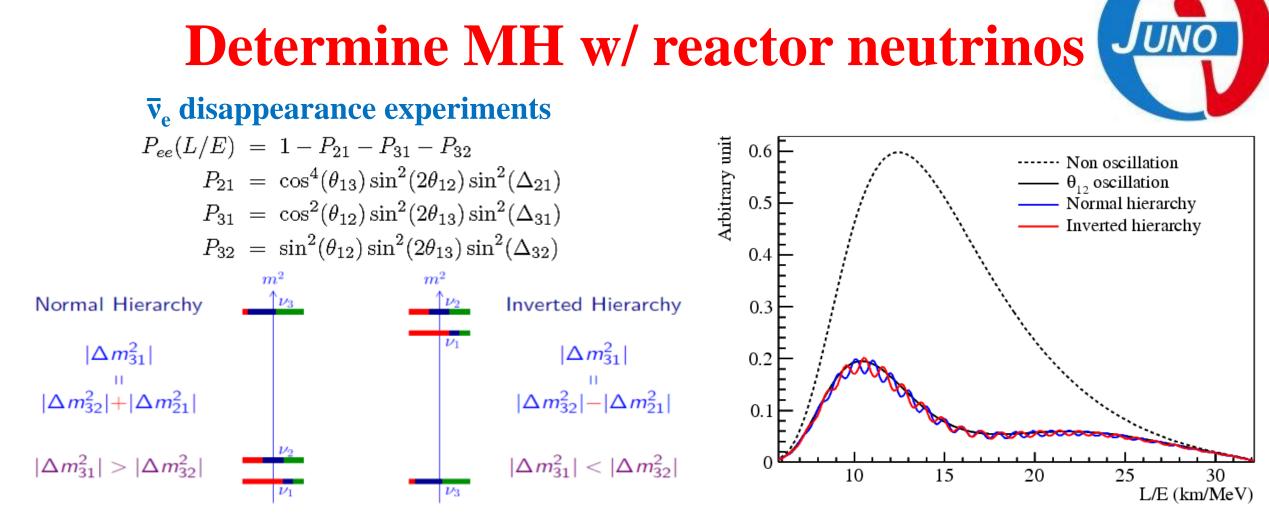
- 20kt liquid scintillator detector
 - In an acrylic ball, diameter ~35m
- 700m underground
- 3% energy resolution
 - 77% photocathode coverage
 - About 17000 20" PMTs
 - PMT maximum QE ~ 35%
 - LS attenuation length > 22m @ 430nm
- Rich physics possibilities

Talk by Y.F. Wang at ICFA seminar 2008, NeuTel 2011; by J. Cao at NuTel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007, 2009.

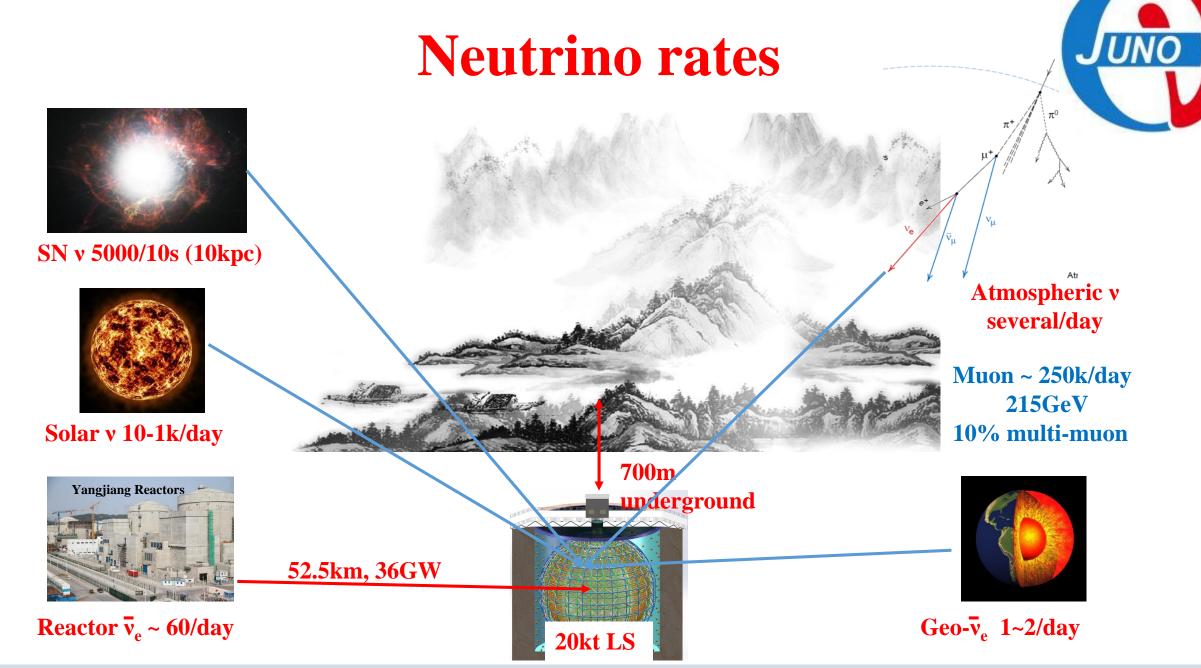
Yellow Book

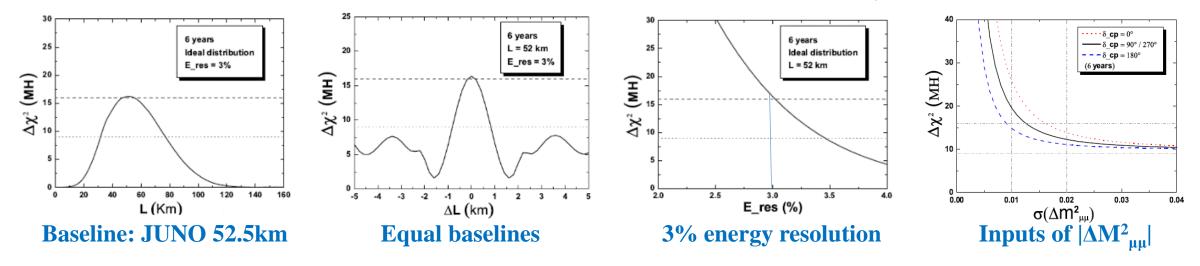


Neutrino Physics with JUNO


The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was recently proposed with the determination of the neutrino mass hierarchy as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements.

- Reactor neutrino physics
 - Mass hierarchy, precision measurements, (geo-neutrino),...
- Astro-particle physics
 - Supernova neutrino, diffused supernova neutrino background, solar neutrino
- High energy events
 - Atmospheric neutrino, nucleon decays, ...


Location of JUNO



- Precision energy spectrum measurement for the interface of P_{31} and P_{32}
- Further improvements with precise $\Delta M^2_{\mu\mu}$ from accelerator experiments

Mass hierarchy sensitivity

JUNO MH sensitivity with six years running: 100k reactor \bar{v}_e events

- 3σ with the spectrum measurement
 - 4σ with external input of $|\Delta M^2_{\mu\mu}|$

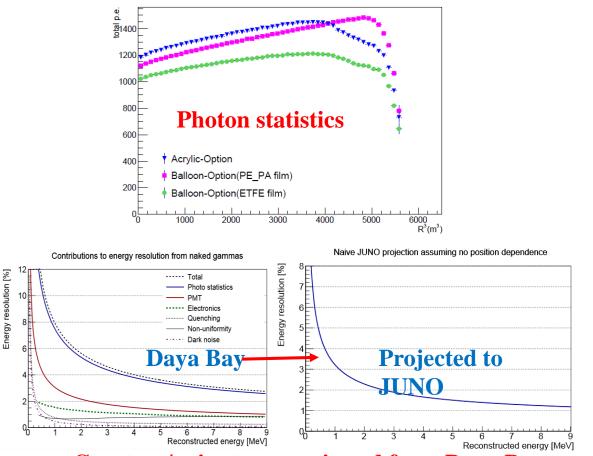
	Ideal	Core distr.	Shape	B/S(stats.)	B/S(shape)	$ \Delta M^2_{\mu\mu} $
Size	52.5km	Real	1%	4.5%	0.3%	1%
$\Delta \chi^2_{MH}$	+16	-4.7	-1	-0.5	-0.1	+8

JUNC

Energy resolution

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}$$

Impact to MH sensitivity

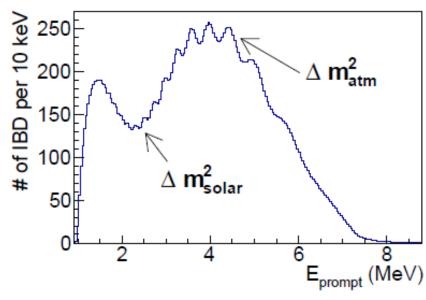

$$\simeq \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{1.6 \ b}{\sqrt{E}}\right)^2 + \left(\frac{c}{1.6 \ \sqrt{E}}\right)^2}$$

• a: statistical term

- MC simulation based Daya Bay MC w/
 - JUNO geometry and 77% PMT coverage
 - Maximum PMT QE 35% and 20m LS ATTL
 - 1200 p.e. /MeV @ center, 2.89%/sqrt(E)
 - 1400 p.e. /MeV @ edge, 2.67%/sqrt(E)

• b: constant term, c: noise term

- Residual non-uniformity, electronics flaw, ..
- Estimated with data validated full MC (Daya Bay and Double Chooz)
- No JUNO show stopper found


Constant/noise term projected from Daya Bay

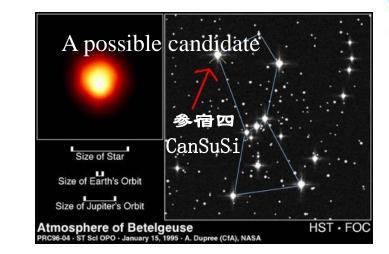
Precision measurements

Current status	ΔM^2_{21}	$ \Delta M^2_{31} $	$sin^2\theta_{12}$	$\sin^2\theta_{13}$	$sin^2\theta_{23}$
Dominant Exp.	KamLAND	MINOS	SNO	Daya Bay	SK/T2k
Individual 1σ	2.7%	4.1%	6.7%	6%	14%
Global 1 0	2.6%	2.7%	4.1%	5%	11%

JUNO 100k IBD Events

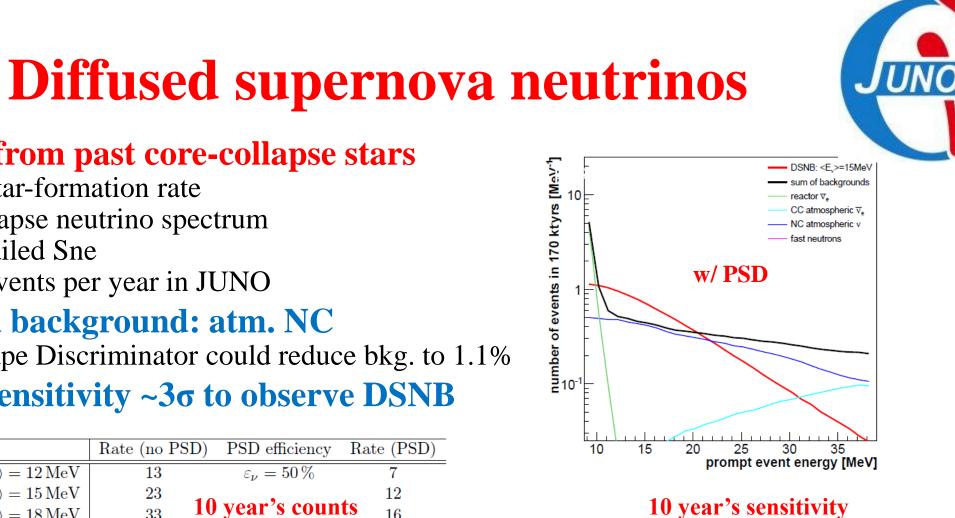
JUNO	Nominal	+B2B(1%)	+BG	+EL(1%)	+NL(1%)
$\sin^2\theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
ΔM^2_{21}	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta M^2_{ee} $	0.27%	0.31%	0.31%	0.35%	0.44%

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 \stackrel{?}{=} 1.$$


Probing the unitarity of U_{PMNS} to ~1% More precise than CKM matrix elements !

Supernova neutrinos

- Less than 20 events observed so far
- Assume a supernova
 - Distance: 10 kpc
 - Energy: 10⁵³ erg
 - Lv same for all types


Estimated Channel	events	Events for different $\langle E_{\nu} \rangle$ values				
Channel	Type	12 MeV	$14 \mathrm{MeV}$	$16 { m MeV}$		
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	4.3×10^3	$5.0 imes 10^3$	5.7×10^3		
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes10^2$	$1.2 imes 10^3$	$2.0 imes 10^3$		
$\nu + e \rightarrow \nu + e$	NC	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$		
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	$3.2 imes 10^2$	$5.2 imes10^2$		
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes10^1$	$1.6 imes10^2$		
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes10^1$	$1.1 imes 10^2$	$1.6 imes 10^2$		

- Much better detection to correlated events versus water Cherenkov detector
- Could measure energy and flux for all types of neutrinos

Physics

- 1. v mass less than $< 0.83 \pm 0.24$
- eV at 95% CL (arXiv:1412.7418);
- 2. Locating SN ~ 9° ;
- 3. Pre-supernova: ~ 1 day;
- 4. Collective v oscillation;
- 5. Mass hierarchy;
- Not the end

39 19			Syst. uncertainty BG	5 %		20%	
0.3	$\varepsilon_{\nu} = 50 \%$	0.13	$\langle \mathrm{E}_{\bar{\nu}_{\mathrm{e}}} \rangle$	rate only	spectral fit	rate only	spectral fit
1.3	$\varepsilon_{\nu} = 50 \%$	0.7	$12{ m MeV}$	2.3σ	2.5σ	2.0σ	2.3σ
$\cdot 10^2$	$arepsilon_{ m NC}=1.1\%$	6.2	$15{ m MeV}$	3.5σ	3.7σ	3.2σ	3.3σ
11	$arepsilon_{ m FN}=1.3\%$	0.14	$18{ m MeV}$	4.6σ	4.8σ	4.1σ	4.3σ
		7.1	$21{ m MeV}$	5.5σ	5.8σ	4.9σ	5.1σ

• Neutrinos from past core-collapse stars

- Cosmic star-formation rate
- Core-collapse neutrino spectrum
- Rate of failed Sne
- Several events per year in JUNO

Dominated background: atm. NC

• Pulse Shape Discriminator could reduce bkg. to 1.1%

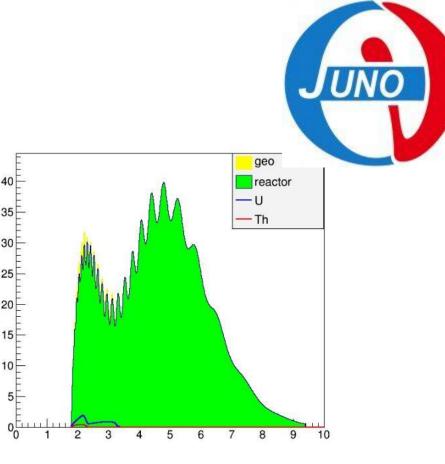
• Expected sensitivity $\sim 3\sigma$ to observe DSNB

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)	
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \mathrm{MeV}$	13	$\varepsilon_{\nu} = 50 \%$	7	
	$\langle E_{\bar{\nu}_e} \rangle = 15 \mathrm{MeV}$	23	0	12	
	$\langle E_{\bar{\nu}_e} \rangle = 18 \mathrm{MeV}$	33	0 year's count	IS 16	
	$\langle E_{\bar{\nu}_e} \rangle = 21 \mathrm{MeV}$	39		19	Г
Background	reactor $\bar{\nu}_e$	0.3	$\varepsilon_{\nu} = 50 \%$	0.13	F
	atm. CC	1.3	$\varepsilon_{\nu} = 50 \%$	0.7	F
	atm. NC	$6\cdot 10^2$	$arepsilon_{ m NC} = 1.1\%$	6.2	
	fast neutrons	11	$arepsilon_{ m FN}=1.3\%$	0.14	
	Σ			7.1	

Geo-neutrinos

35

30


25

20

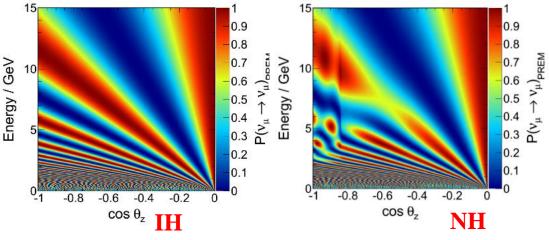
15

5

- The earth is huge "reactor"
 - KamLAND: 30±7 TNU PRD 88 (2013) 033001
 - **Borexino:** 38.8 ± 12.2 TNU *PLB* 722 (2013) 295
 - Statistics dominant
- JUNO desires to reach the error of 3 TNU
 - 20 times more statistics
 - Huge reactor neutrino background
 - Precise reactor spectrum is required
- Precise geo-neutrino measurement would serve the geological community a lot.

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	36.5 ± 36.5
⁹ Li - ⁸ He	657 ± 130
$^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Atmospheric and Solar neutrino


• Atmospheric neutrino

- Sensitive to MH due to the matter effect
- $1-2\sigma$ sensitivity in JUNO

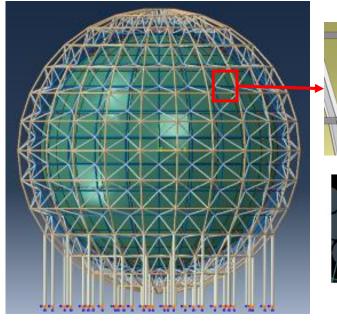
• Solar neutrino

- ⁷Be and ⁸B ν in JUNO
- Energy threshold and background
 - Possible 0.1MeV w/ rejecting events at the detector center (dark noise) and edge (radioactivity)
- Sterile neutrino, indirect dark matter search, nucleon decay, etc..

MH effects in atmospheric v

Solar neutrino rate in JUNO

Solar r	Solar neutrino signal rates [counts/day/kton]						
pp ν	1378						
$^{7}\mathrm{Be}~ u$	517						
pep $ u$	28						
$\stackrel{\rm pep}{^{8}{\rm B}} \frac{\nu}{\nu}$	4.5						
$^{13}{\rm N}/^{15}{\rm O}/^{17}{\rm F}~\nu$	7.5/5.4/0.1						


Central detector

• A huge LS detector in water

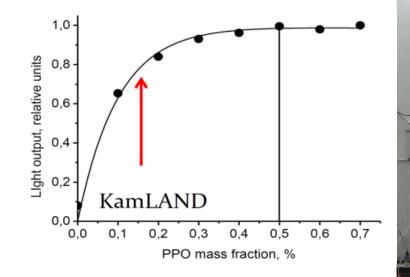
- Acrylic tank + SS truss, selected in July, 2015
- Details in Jie's parallel talk on Oct. 28th

Challenges

- Engineering: mechanics, safety, lifetime, ...
- LS: high transparency, low background
- PMT: high QE, high coverage
- Utilizing 3" PMTs to fill the gaps of 20" PMTs is under consideration
- A prototype detector is under construction at IHEP, for the test of
 - PMTs of MCP, HZC, Hamamatsu, and potting
 - Electronics
 - Liquid scintillator

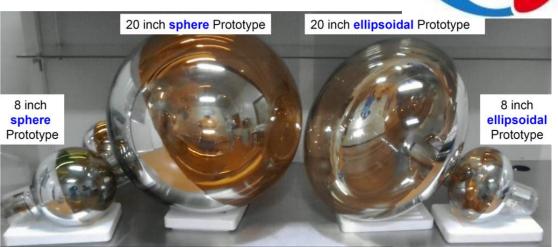
Conceptual explosion proof Structure of PA

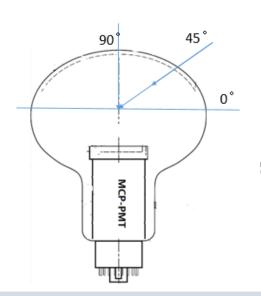
Add 3-inch PMTs in the gaps

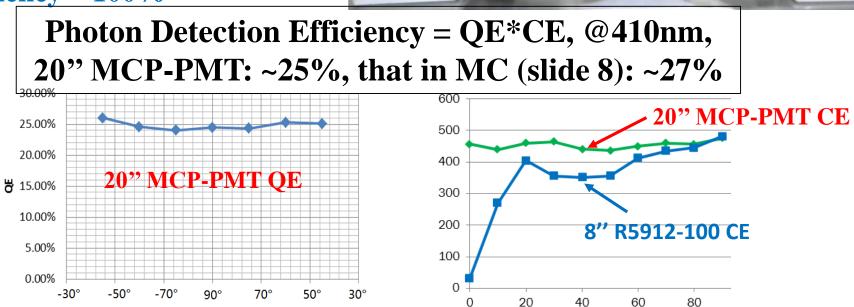


Liquid scintillator in the CD

- LAB + PPO + bis-MSB, no Gd
- Increase light yield
 - Optimize fluors concentrations
- Increase transparency
 - Better quality raw LAB
 - Online handling and purification
 - Distillation, Filtration, Water extraction, Nitrogen stripping, ...
- Reduce radioactivity
 - Less risk since no Gd loading


LS radio. g/g	²³⁸ U	²³² Th	⁴⁰ K	²¹⁰ Pb	Ref.
No distillation	10-15	10-15	10-16	1.4*10-22	Borexino,
After distillation	10-17	10-17	10-18	10-24	KamLAN D, CTF



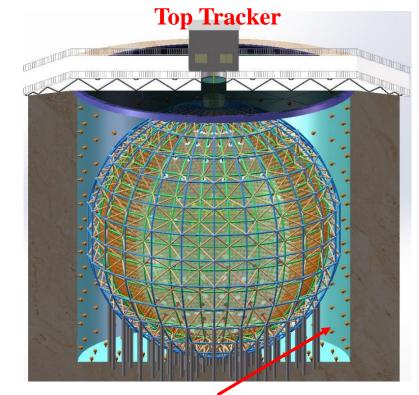

Linear Alky Benzene (LAB)	Atte. Length @ 430 nm		
RAW (specially made)	14.2 m		
Vacuum distillation	19.5 m		
SiO ₂ coloum	18.6 m		
Al ₂ O ₃ coloum	25 m		

High QE PMT efforts

- A new design of using MCP
 - 4π collection, under development
 - Technical issues mostly solved, successful 8" and 20" prototypes.
- Alternative options: Hamamatsu or Photonics
- News from 20" MCP-PMT:
 - Quantum Efficiency ~ 25% @ 410nm
 - Collection Efficiency ~ 100%

Veto detectors

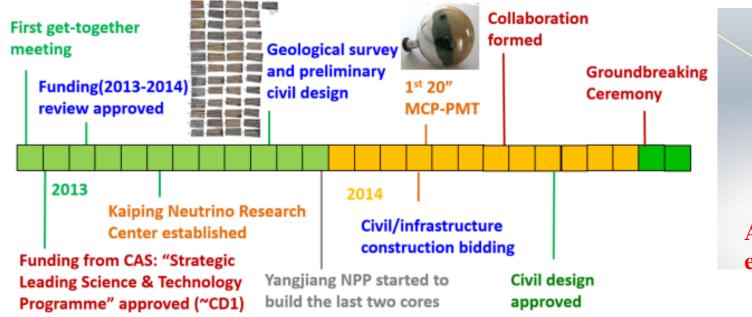
• Water Cherenkov detector

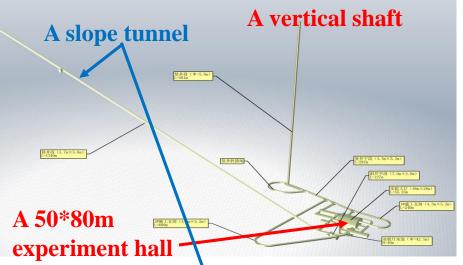

- At least 2 m water shielding
- ~1500 20"PMTs
- 20k~30k tons of pure water
- Earth magnetic field shielding
- Top muon tracker
 - Decommissioned OPERA plastic scintillator

• Cosmic muon rate

- 0.0031 Hz/m^2 , mean energy 214 GeV
- Muon track will be used for muoninduced background subtraction

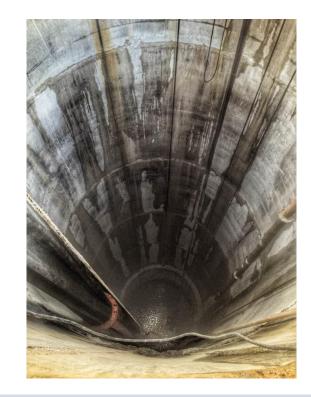
Muon multiplicity

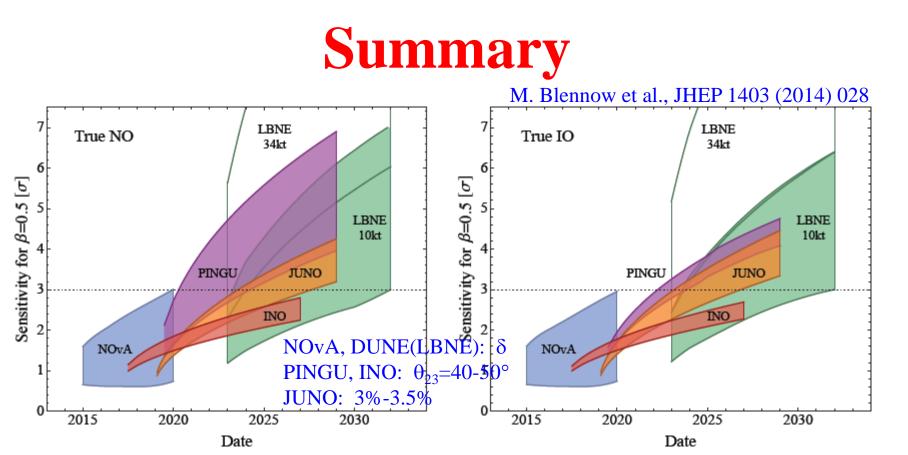

Ī	Multiplicity	1	2	3	4	5	6
	Fraction	89.6%	7.7%	1.8%	0.6%	0.3%	0.07%


Water Cherenkov detector

Project plan and progresses

- Civil construction: 2015-2017
- Detector component production: 2016-2017
- PMT production: 2016-2019
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020




The tunnel

- By July 26th, the slope tunnel has finished 491.2m of 1340.6m
 - By the end of 2015, about 900m is expected to be finished
- The vertical shaft has finished 75m of 611m
 - To be completed by the end of 2015

- JUNO: a multi-purpose LS detector with rich physics possibilities
 - Competitive in schedule and Complementary in physics
- R&D activities and civil constructions are smoothly ongoing
- Plan to start data taking in 2020

The collaboration

