

Status of India-based Neutrino Observatory

10/30/15

• At the beginning of this year, we received approval for building the INO facility near Madurai in south India.

• A cavern of dimensions 132m × 26 m × 32.5m will be constructed at the end of a 1.91 km long tunnel.

• INO will have a 50 kilotons magnetized Iron Calorimeter (ICAL) to detect the atmospheric muonic neutrinos and anti neutrinos interactions.

• Uniqueness of this experiment is its capability to differentiate between a positive charged muon and a negatively charged muon and thus between a muon neutrino and a muon anti-neutrino that prom0/30/15it. Md. Naimuddin 3

Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

The ICAL Collaboration

arXiv:1505.07380v1 [physics.ins-det] 27 May 2015

10/30/15

Md. Naimuddin

• Atmospheric neutrinos provide a wider range for E and L than any artificial neutrino source.

•An ability to discriminate between neutrinos and anti-neutrinos enables efficient determination of neutrino mass ordering independent of CP phase.

•Accurate determination of the atmospheric parameters (θ_{23} octant, deviation of θ_{23} from maximality)

•Determination of neutrino mass hierarchy (large θ_{13} helps)

Md. Naimuddin

• Determination of CP violation in the lepton sector

• Nonstandard interactions, CPT violation, long range forces, ultrahigh energy muon fluxes, ...

• Hadron shower reconstruction allows access to neutrino energy and high energy cosmic rays

INO: Site at a Glance

- Cavern set in Charkonite Rock under the 1589 m peak;
- Vertical cover 1289 m;
- Accessible through a 2 km tunnel
- Cavern 1 will host 50 kt ICAL (space for 100 kt);
- Other caverns for multiple experiments ($0\nu\beta\beta$, DM) 10/30/15
 Md. Naimuddin

- ➤ Three modules, each of size 16m×16m×14.4m.
- In each module 151 layers of iron plates and RPC.
- 5.6 cm Thick iron plates are separated by 4.0cm gap for RPC, act as active detector element.
- ➢ Total mass of 51kton.
- ➤ Magnetic field applied 1~ 1.5T
- The readout of RPC is performed by external orthogonal pick up strips(X and Y strips).

10/30/15

Construction of the ICAL detector

10/30/15

Md. Naimuddin

RPC Characteristics

Simulation Framework

NUANCE	$\begin{array}{c} \label{eq:constraint} \textbf{Neutrino Event}\\ \textbf{Generation}\\ \nu_{\ell} + N \rightarrow \ell + X \ .\\ \text{Generates particles that result}\\ \text{from a random interaction of a}\\ \text{neutrino with matter using}\\ \text{theoretical models for both}\\ \text{neutrino fluxes and cross-sections.} \end{array}$	Output: (i) Reaction Channel (ii) Vertex and time information (iii) Energy and momentum of all final state particles
GEANT	Event Simulation $\ell + X$ through simulated ICAL	Output: (i) x, y, z, t of the particles as
H	Simulates propagation of particles through the ICAL detector with RPCs and magnetic field.	they propagate through detector (ii) Energy deposited (iii) Momentum information
	Event Digitisation (X, Y, Z, T) of final states on including noise and detector efficieny Add detector efficiency and noise to the hits.	Output: (i) Digitised output of the previous stage
ANALYSIS	Event Reconstruction (E, \vec{p}) of ℓ , X (total hadrons) Fit the muon tracks using Kalman filter techniques to reconstruct muon energy and momentum; use hits in hadron shower to reconstruct hadron	Output: (i) Energy and momentum of muons and hadrons, for use in physics analyses.
	Md Naimuddin	13

Particle Detection in ICAL

- Neutrinos interact within ICAL detector and produce associated lepton and hadronic shower.
- For muon neutrino , neutrino energy (E_v) will be the sum of muon energy (E_μ) and hadronic energy (Eh): $E_v = E_u + E_h$
- To reconstruct the E v precisely both muon energy and hadron energy have to be measured very precisely
- Muons give a clear track inside detector, Energy of muons can be reconstructed from the track length in the detector.
- The energy of hadrons can be calibrated as a function of number of total hits.

Muon Resolutions

Hadron Resolution

Resolution for 2GeV energy is approximately 60% and 15 GeV is approx. 36%.

 $E_{h} = E_{v} - E_{u}$ (from hadron hit calibration)

10/30/15

Md. Naimuddin

From GEANT4 Simulation

10/30/15

Md. Naimuddin

Atmospheric Neutrino Flux

Atmospheric neutrino flux has been generated with NUANCE using Honda 3d fluxes for the Kamioka site in Japan. > The Honda atmospheric fluxes at the INO site to be

 $\phi_{v} (m^{-2} \sec^{-1} \operatorname{sr}^{-1} \operatorname{GeV}^{-1})$ INO -0.5 0 -0.5 0 cosθ Athar, Honda, Kajita, Kasahara, Midorikawa, finalized soon. arXiv:121.0.5154 [hep-ph] Naimuddin Md.

19

We define the Poissonian χ^2_- for μ^- events as :

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2} ,$$

where

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

- 1) Overall 5% systematic uncertainty
- 2) Overall flux normalization: 20%
- 3) Overall cross-section normalization: 10%
- 4) 5% uncertainty on the zenith angle dependence of the fluxes
- 5) Energy dependent tilt factor:
- $\Phi\delta(E) = \Phi O(E) [E/E0]\delta \approx \Phi O(E) [1+\delta \ln E/E0]$
- where $\underline{F}_{0,\overline{1}}^{0}$ $\underline{F}_{0,\overline{1}}^{0}$

→ Use priors on $|\Delta m^2_{atm}|$, θ_{23} , θ_{13} from LBL+ reactors projected reach 10/30/15 Md. Naimuddin 20

Mass Hierarchy sensitivity

~2.3 σ sensitivity for sin² θ_{23} =0.5, sin²2 θ_{13} =0.1 by 2025 (5 yrs) ~3 σ sensitivity for sin² θ_{23} =0.5, sin²2 θ_{13} =0.1 by 2030 (10 yrs)

10/30/15 Md. Naimuddin

2.8

2.7

2.6

500 kt - yr

NO Combined with T2K and NOv

23

~3 σ sensitivity for sin² θ_{23} =0.5, sin²2 θ_{13} =0.1 in 6 yrs for NH. ~4 σ sensitivity for sin² θ_{23} =0.5, sin²2 θ_{13} =0.1 in 13 yrs for NH. 10/30/15 Md. Naimuddin

Synergy with Other Experiments

- Though ICAL itself is rather insensitive to δ_{CP} , data from ICAL can still improve the determination of δ_{CP} itself, by providing input on mass hierarchy.
- ➤ This is especially crucial in the range $0 \le \delta_{CP} \le \pi$, precisely where the ICAL data would also improve the hierarchy discrimination of NOvA and other experiments 10/30/15
 Md. Naimuddin

- ✓ Search for sterile neutrinos
- ✓ CPT violation and Non-Standard Interactions
- ✓ Search for magnetic monopoles
- \checkmark Search for dark matter from the Sun
- ✓ Long range forces
- ✓ Exploiting NC events
- ✓ Possibilities of electron detection

Md. Naimuddin

- The land for the experimental site and surface facility at Madurai have been acquired.
- ✓ Detector R&D is almost complete for the base design.
 Further improvements are being pursued.
- ✓ Construction of an engineering module 8m X 8m X 2.1m is being initiated.
- The work is interrupted due to some litigations pending in courts of law regarding certain clearances.
- ✓ Still a long way to go Md. Naimuddin

Thank you!

Md. Naimuddin

Averaged over all directions Summed over all flavors of neutrino and anti-neutrino

Relative contributions of three cross-section processes to the total events

in the absence of oscillation and without detector efficiency and resolutions

10/30/15 Md. Naimuddin