Status of India-based Neutrino Observatory

$10 / 30 / 15$
Stonv Brook University, USA Md. Namuddin

- At the beginning of this year, we received approval for building the INO facility near Madurai in south India.
- A cavern of dimensions $132 \mathrm{~m} \times 26 \mathrm{~m} \times 32.5 \mathrm{~m}$ will be constructed at the end of a 1.91 km long tunnel.
- INO will have a 50 kilotons magnetized Iron Calorimeter (ICAL) to detect the atmospheric muonic neutrinos and anti neutrinos interactions.
- Uniqueness of this experiment is its capability to differentiate between a positive charged muon and a negatively charged muon and thus between a muon neutrino and a muon anti-neutrino that proddic(4)5it. Md. Naimuddin

Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

The ICAL Collaboration
arXiv:1505.07380v1 [physics.ins-det] 27 May 2015

- Atmospheric neutrinos provide a wider range for E and L than any artificial neutrino source.
-An ability to discriminate between neutrinos and anti-neutrinos enables efficient determination of neutrino mass ordering independent of CP phase.
- Accurate determination of the atmospheric parameters $\left(\theta_{23}\right.$ octant, deviation of θ_{23} from maximality)
-Determination of neutrino mass hierarchy (large θ_{13} helps)
- Determination of CP violation in the lepton sector
- Nonstandard interactions, CPT violation, long range forces, ultrahigh energy muon fluxes, ...
- Hadron shower reconstruction allows access to neutrino energy and high energy cosmic rays

INO: Site at a Glance

- Cavern set in Charkonite Rock under the 1589 m peak;
- Vertical cover 1289 m;
- Accessible through a 2 km tunnel
- Cavern 1 will host 50 kt ICAL (space for 100 kt);
- Other caverns for multiple experiments ($0 \nu \beta \beta$, DM) 10/30/15
Md. Naimuddin
$>$ Three modules, each of size $16 \mathrm{~m} \times 16 \mathrm{~m} \times 14.4 \mathrm{~m}$.
$>$ In each module 151 layers of iron plates and RPC.
$>5.6 \mathrm{~cm}$ Thick iron plates are separated by 4.0 cm gap for RPC, act as active detector element.
$>$ Total mass of 51kton.
$>$ Magnetic field applied $1 \sim 1.5 \mathrm{~T}$
$>$ The readout of RPC is performed by external orthogonal pick up strips(X and Y strips).

Construction of the ICAL detector

$10 / 30 / 15$
Md. Naimuddin

Construction of RPC

Two 2 mm thick float Glass

Separated by 2 mm spacer
2 mm thick spacer

RPC Characteristics

Simulation Framework

NUANCE	Neutrino Event Generation $\nu_{\ell}+N \rightarrow \ell+X$ Generates particles that result from a random interaction of a neutrino with matter using theoretical models for both neutrino fluxes and cross-sections.	Output: (i) Reaction Channel (ii) Vertex and time information (iii) Energy and momentum of all final state particles
GEANT	Event Simulation $\ell+X$ through simulated ICAL Simulates propagation of particles through the ICAL detector with RPCs and magnetic field.	Output: (i) x, y, z, t of the particles as they propagate through detector (ii) Energy deposited (iii) Momentum information
DIGITISATION	Event Digitisation (X, Y, Z, T) of final states on including noise and detector efficieny Add detector efficiency and noise to the hits.	Output: (i) Digitised output of the previous stage
ANALYSIS	Event Reconstruction (E, \vec{p}) of ℓ, X (total hadrons) Fit the muon tracks using Kalman filter techniques to reconstruct muon energy and momentum; use hits in hadron shower to reconstruct hadron	Output: (i) Energy and momentum of muons and hadrons, for use in physics analyses.

- Neutrinos interact within ICAL detector and produce associated lepton and hadronic shower.
- For muon neutrino, neutrino energy $\left(E_{v}\right)$ will be the sum of muon energy $\left(\mathrm{E}_{\mu}\right)$ and hadronic energy (Eh):

$$
\mathrm{E}_{\nu}=\mathrm{E}_{\mu}+\mathrm{E}_{\mathrm{h}}
$$

- To reconstruct the E v precisely both muon energy and hadron energy have to be measured very precisely
- Muons give a clear track inside detector, Energy of muons can be reconstructed from the track length in the detector.
- The energy of hadrons can be calibrated as a function of number of total hits.

Muon Resolutions

Hadron Resolution

Resolution for

 2 GeV energy is approximately 60% and 15GeV is approx. 36\%.
$\mathrm{E}_{\mathrm{h}}=\mathrm{E}_{\mathrm{v}}-\mathrm{E}_{\mu}$ (from hadron hit calibration)

A Typical Event in ICAL

From GEANT4 Simulation
Md. Naimuddin
$>$ Atmospheric neutrino flux has been generated with NUANCE using Honda 3d fluxes for the Kamioka site in Japan.
$>$ The Honda atmospheric fluxes at the INO site to be finalized soon.

Athar, Honda, Kajita, Kasahara, Midorikawa, Md. Naimuddin | arXiv:1210.5154 [hep-ph] |
| :--- |

The χ^{2} Analysis

We define the Poissonian χ_{-}^{2} for μ^{-}events as :

$$
\chi_{-}^{2}=\min _{\xi_{l}} \sum_{i=1}^{N_{E_{\text {had }}^{\prime}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\text {cos } \theta_{\mu}}}\left[2\left(N_{i j k}^{\text {theory }}-N_{i j k}^{\text {data }}\right)-2 N_{i j k}^{\text {data }} \ln \left(\frac{N_{i j k}^{\text {theory }}}{N_{i j k}^{\text {data }}}\right)\right]+\sum_{l=1}^{5} \xi_{l}^{2},
$$

where

$$
N_{i j k}^{\mathrm{theory}}=N_{i j k}^{0}\left(1+\sum_{l=1}^{5} \pi_{i j k}^{l} \xi_{l}\right) .
$$

1) Overall 5% systematic uncertainty
2) Overall flux normalization: 20%
3) Overall cross-section normalization: 10%
4) 5% uncertainty on the zenith angle dependence of the fluxes
5) Energy dependent tilt factor:
$\Phi \delta(\mathrm{E})=\Phi 0(\mathrm{E})[\mathrm{E} / \mathrm{E} 0] \delta \approx \Phi 0(\mathrm{E})[1+\delta \ln \mathrm{E} / \mathrm{E} 0]$
where唇元 2 GeV and δj

Oscillation Parameter Sensitivity

\rightarrow Use priors on $\left|\Delta \mathrm{m}^{2}{ }_{\text {atm }}\right|, \theta_{23}, \theta_{13}$ from LBL+ reactors projected reach
Md. Naimuddin

Mass Hierarchy sensitivity

$\sim 2.3 \sigma$ sensitivity for $\sin ^{2} \theta_{23}=0.5, \sin ^{2} 2 \theta_{13}=0.1$ by 2025 (5 yrs)
$\sim 3 \sigma$ sensitivity for $\sin ^{2} \theta_{23}=0.5, \sin ^{2} 2 \theta_{13}=0.1$ by 2030 (10 yrs)
Md. Naimuddin

Octant Sensitivity

$\sim 3 \sigma$ sensitivity for $\sin ^{2} \theta_{23}=0.5, \sin ^{2} 2 \theta_{13}=0.1$ in 6 yrs for NH .
$\sim 4 \sigma$ sensitivity for $\sin ^{2} \theta_{23}=0.5, \sin ^{2} 2 \theta_{13}=0.1$ in 13 yrs for NH .
10/30/15
Md. Naimuddin

Synergy with Other Experiments

$>$ Though ICAL itself is rather insensitive to δ_{CP}, data from ICAL can still improve the determination of δ_{CP} itself, by providing input on mass hierarchy.
$>$ This is especially crucial in the range $0 \leq \delta_{\mathrm{CP}} \leq \pi$, precisely where the ICAL data would also improve the hierarchy discrimination of NOvA and other experiments
Md. Naimuddin
\checkmark Search for sterile neutrinos
\checkmark CPT violation and Non-Standard Interactions
\checkmark Search for magnetic monopoles
\checkmark Search for dark matter from the Sun
\checkmark Long range forces
\checkmark Exploiting NC events
\checkmark Possibilities of electron detection

Summary

\checkmark The land for the experimental site and surface facility at
Madurai have been acquired.
\checkmark Detector R\&D is almost complete for the base design.
Further improvements are being pursued.
\checkmark Construction of an engineering module $8 \mathrm{~m} \mathrm{X} \mathrm{8m} \mathrm{X} \mathrm{2.1m}$
is being initiated.
\checkmark The work is interrupted due to some litigations pending in courts of law regarding certain clearances.
\checkmark Stijlt ay llgng way tqge. Naimuddin

Thank you!

Atmospheric Flux

Event Distribution (NUANCE)

Relative contributions of three cross-section processes to the total events
in the absence of oscillation and without detector efficiency and resolutions

