Status of the Deep Underground Neutrino Experiment at the

Long Baseline Neutrino Facility

United States

Oklahoma

as

Minnesota

Canada

Manitoba

Thomas Kutter, LSU for the DUCE Collaboration

Arkansas

Illinois Fermilab 9 Wisconsin

ad, SD

NNN 2015 Oct. 30, 2015

Michigan

Outline

- Introduction
- Scientific Program
- DUNE Strategy
- Overview of LBNF and DUNE Experiment
- Physics Sensitivities
- Timeline + Summary

Neutrino mixing

Neutrinos change flavor while propagating in vacuum/matter

Neutrinos have mass = evidence for physics beyond the standard model

PMNS (Pontecorvo, Maki, Nakagawa, Sakata) – matrix describes mixing between flavor and mass eigenstates in analogy to CKM (Cabibbo,Kobayashi, Maskawa) –matrix for quarks

DUNE Primary Physics Program

1) Neutrino Oscillation Physics

- Search for neutrino CP properties : What is the value of the phase δ ?
- Measure neutrino mass hierarchy
- Perform precision measurements of neutrino (mixing) parameters :

Test the 3 flavor paradigm

Measure symmetry between 2nd and 3rd generation :

how close is θ_{23} to $\pi/4$?

Measure neutrino cross sections

2) Nucleon Decay

Target SUSY-favored mode: $p \rightarrow K^+ \overline{v}$

3) Supernova burst and astro-physics Galactic core collapse supernova, best sensitivity to ν_{e}

DUNE Primary Physics Program

1) Neutrino Oscillation Physics

- Search for neutrino CP properties : What is the value of the phase δ ?
- Measure neutrino mass hierarchy
- High precision measurements to look for High precision measurements to look for Perform precision measurements of neutrino (mixing) parameters :

Test the 3 flavor paradigm

Measure symmetry between 2nd and 3rd generation :

how close is θ_{23} to $\pi/4$?

Measure neutrino cross sections

2) Nucleon Decay

Target SUSY-favored mode: $p \rightarrow K^+ \overline{\nu}$

3) Supernova burst and astro-physics Galactic core collapse supernova, best sensitivity to ν_{e}

Measurement Strategy

Use high intensity ν_{μ} (and $\overline{\nu}_{\mu}$) beam \rightarrow measure $\overline{\nu}_{e}$ appearance and $\overline{\nu}_{\mu}$ disappearance **Choose long baseline**

 \rightarrow large matter effects ~40% (at L=1300 km)

Match E₁ to oscillation maxima over broad energy range

 \rightarrow disentangle CP and mass hierarchy

DUNE Overview

- four identical cryostats deep underground
- staged approach to four independent 10 kt LAr detector modules
- Single-phase and dual-phase readout under consideration

Long Baseline Neutrino Facility

Fermilab Accelerator Complex

Test Beam _____ Facility

Linac

Booster Neutrino Bear

Booster ______ Muon Area

Neutrino Beam

To Minnesota

Proton Beamline Accelerator Technology Complex

Advanced Accelerator Test Area

Illinois Accelerator Research Center

Superconducting Linac (Part of proposed PIP II project)

Planned upgrades:
 Proton Improvement Plan

Neutrino Beam

Main Injector and Recycler

Present performance: achieved: 521 kW 700kW expected by 2/2016

400 MeV Linac $T_p = 8$ GeV Booster synchrotron \rightarrow 11 pulses at 15 Hz into MI Main Injector (MI): $T_p = 120$ GeV; rep. cycle: 1.33s Protons
Neutrinos
Muons
Targets
R&D Areas

Decommissioned

Proton Improvement Plan II and III

Upgrades to increase proton yield

PIP II : (ready by \sim 2025)MI beam power \rightarrow 1.2 MW

- upgrade to superconducting (SC) 800 MeV linac
- Booster rep. rate: $15 \rightarrow 20$ Hz
- MI rep. cycle: $1.33 \rightarrow 1.2$ s

PIP III : (> 2025) MI beam power \rightarrow 2.3 MW

- Upgrade to 8 GeV SC linac OR
- Upgrade to 2 GeV SC linac and
- Replace booster with 8 GeV rapid cycling synchrotron (RCS)

LBNF Beamline

Extract 60 – 120 GeV primary proton beam onto 95cm graphite target \rightarrow (1.1 – 1.9) × 10²¹ protons on target/yr Extract 60 – 120 GeV primary proton beam onto 95cm graphite target Unoscillated Spectra at FD \downarrow Beference Design

Focusing horns

1) NuMI like horn (reference design) NNN15: L. Fields

2) optimized focusing design (genetic algorithm)

Decay pipe: 4m diameter \sim 200m long; He filled

DUNE Near Detector

Measure :

 $\begin{array}{ll} {\rm CC} \ \nu_{\mu} \ {\rm events} & ({\rm normalization, spectrum}) \\ {\rm CC} \ \nu_{\rm e} \ , \ {\rm NC} \ \pi^{\rm o} \ {\rm events} \ ({\rm backgrounds}) \\ {\rm Neutrino \ interaction \ properties} \end{array}$

 \sim 10⁷ interactions/yr → high precision

Reference design:

Fine Grained Tracker inside 0.4 T magnetic field : straw-tube tracker Surrounded by lead-scintillator ECal and RPC muon tracker

Multiple nuclear targets: Ar, C, Ca, Fe, ...

Other designs under consideration:

- Magnetized LAr TPC
- High-pressure GAr TPC

DUNE Far Detector at SURF

Single-Phase LAr Detector

Readout of

- Ionization charge and
- scintillation light

Detector mass [kt]			
total	17.1		
active	13.8		
fiducial	11.6		

Photon Detection System integrated in APAS to measure non-beam event timing ¹³

Dual-Phase LAr Detector

Ionization charge extracted into Ar gas phase charge amplification via large electron multipliers (LEM) before readout [2 dimensional charge collection]

→ If demonstrated, could be used as alternative design for 2nd or subsequent 10 kt far detector modules

LArTPC Development Path

Fermilab SBN and CERN neutrino platform provide a strong LArTPC development and prototyping program

DUNE Collaboration

792 Collaborators

144 Institutes

Neutrino Oscillation Prospects

Exposure: 150 kt MW yr

Assumes: $\sin^2 2\theta_{13}$ = 0.084, $\sin^2 \theta_{23}$ = 0.45, Δm^2_{31} = 2.47×10⁻³, δ_{CP} = 0

→ Simultaneous fit to all 4 samples to determine oscillation parameters

Integrated events 0.5 – 20 GeV

	CDR Reference Design	Optimized Design
ν mode (150 kt · MW · year)		
$ u_{\mu}$ Signal	10842	7929
$ar{ u}_{\mu}$ CC Bkgd	958	511
NC Bkgd	88	76
$ u_ au + ar u_ au$ CC Bkgd	63	29
$\bar{\nu}$ mode 150 kt \cdot MW \cdot year)		
$ar u_\mu$ Signal	3754	2639
$ u_{\mu}$ CC Bkgd	2598	1525
NC Bkgd	50	41
$ u_{ au} + ar{ u}_{ au}$ CC Bkgd	39	18

	CDR Reference Design	Optimized Design
$ u$ mode [150 kt \cdot MW \cdot year)		
$ u_e$ Signal NH (IH)	861 (495)	945 (521)
$ar{ u}_e$ Signal NH (IH)	13 (26)	10 (22)
Total Signal NH (IH)	874 (521)	955 (543)
Beam $ u_e + \bar{ u}_e$ CC Bkgd	159	204
NC Bkgd	22	17
$ u_ au + ar u_ au$ CC Bkgd	42	19
$ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd	3	3
Total Bkgd	226	243
$\bar{\nu} \mod 150 \text{ kt} \cdot \text{MW} \cdot \text{year})$		
ν_e Signal NH (IH)	61 (37)	47 (28)
$ar{ u}_e$ Signal NH (IH)	167 (378)	168 (436)
Total Signal NH (IH)	228 (415)	215 (464)
Beam $ u_e + \bar{ u}_e$ CC Bkgd	89	105
NC Bkgd	12	9
$ u_ au+ar u_ au$ CC Bkgd	23	11
$ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd	2	2
Total Bkgd	126	127

I' I D I'

Projected Performance vs Exposure

Assuming reference beam design

→ definitive determination of neutrino mass hierarchy

→ 5 σ measurement of CP violation for 50% of all possible values of $\delta_{\rm CP}$

Systematic uncertainty on $\nu_{\mu} \oplus \nu_{e} = 5 \oplus 2 \%$ NNN15: E. Worcester

Projected Performance vs Exposure

$\theta_{\rm 23}$ Resolution and Octant Sensitivity

→ Information on potential symmetry between 2nd and 3rd generation ? (e.g. equal contribution of ν_{μ} and ν_{τ} to ν_{3})

<u>Global fit</u> indicates: global minimum at $\theta_{23} = (42.2^{+3.0}_{-1.6})^{\circ}$ for NH 2nd local minimum at $\theta_{23} = (49.5^{+1.5}_{-2.1})^{\circ}$ for IH

Nucleon Decay

Large LAr detectors offer enhanced capabilities to detect some predicted/hypothesized nucleon decay modes

Decay Mode	Water Cherenkov		Liquid Argon TPC				
	Efficiency	Background	E	fficiency	Ba	ackgrou	nd
$p ightarrow K^+ \overline{ u}$	19%	4		97%		1	
$p ightarrow K^0 \mu^+$	10%	8		47%		< 2	
$p ightarrow K^+ \mu^- \pi^+$				97%		1	
$n ightarrow K^+ e^-$	10%	3		96%		< 2	
$n ightarrow e^+ \pi^-$	19%	2		44%		0.8	

ICARUS T600 event

Antonello et al., Adv. HE Phys. (2013) 260820

events per Mt yr 🧹

Strengths of LAr:

- Low threshold (no Cherenkov thresh.)
- Good event reconstruction and PID
- Low backgrounds
 - Cosmogenic K⁰ production followed by charge exchange

Supernova Neutrinos

LAr detectors are predominantly sensitive to $\nu_{\rm e}$: $\nu_{\rm e}$ + ${}^{40}{\rm Ar}$ ightarrow ${\rm e}^{-}$ + ${}^{40}{\rm K}^{*}$

- \rightarrow sensitivity to neutronization burst: flux primarily composed of $\nu_{\rm e}$
- \rightarrow sensitivity to neutrino mass hierarchy (imprint on E spectrum)
- → complementary to water Cherenkov and liquid scintillator experiments ($\overline{\nu}_{e}$ sensitivity)

Event nos. assume NO neutrino oscillations

Signal: Burst of events with energies of tens of MeV

LBNF/DUNE Timeline

Milestones:

7/2015: successfully passed DOE CD-1-R ν -beam physics **10/2015**: protoDUNE approved at CERN **12/2015**: DOE CD-3a review \rightarrow approval means start of construction (far site excavation starting in 2017))

start of

Summary

- DUNE science program addresses fundamental questions in particle physics
 - 1. Neutrino Oscillations: CP violation, Mass hierarchy, precision measurements of neutrino oscillation parameters and neutrino interactions
 - 2. Nucleon decay
 - 3. SNe burst and astro-physics
- LBNF/DUNE will employ a 1.2 MW (and upgradable) neutrino beam, near detector and a modular 40kt LAr far detector at Fermilab and SURF
- International DUNE collaboration has formed and welcomes new members to help define, build and further improve the experimental program

Backup slides

Physics Milestones

Physics milestone	Exposure kt · MW · year (reference beam)	Exposure kt · MW · year (optimized beam)
1° θ_{23} resolution ($\theta_{23} = 42^{\circ}$)	70	45
CPV at 3σ ($\delta_{ m CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	160	100
CPV at 5σ ($\delta_{ m CP}=+\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{ m CP}=0$)	450	290
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	525	320
CPV at 5σ 50% of δ_{CP}	810	550
Reactor θ_{13} resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of δ_{CP}	1320	850

Effect of Systematic Uncertainties

 \rightarrow Systematic uncertainty < 3% important after \sim 200 kt MW yr

NNN15: E. Worcester