NNN15

International Workshop for the Next Generation Nucleon Decay and Neutrino Detector

UD2 Unification Day 2 (UD2)

Simons Center for Geometry and Physics Stony Brook University

October 28-31, 2015

Liquid Xe detectors for double beta decay and connection with large LAr detectors

Andrea Pocar

VET NOV TES TAM EN TVM

University of Massachusetts, Amherst Princeton University ith the EXO-200/nEXO and DarkSide Collaborations)

Outline

Large LXe + LAr detectors for ultra-low background physics

- Physics goals
- General arena
- Focus on Time Projection Chambers (TPCs)
 - The EXO experience (0vββ decay)
 - The DarkSide experience (WIMP dark matter)
- Common threads, characteristic distinctions
- Outlook

Disclaimer: this is not a comprehensive review of the field

Liquid xenon (LXe) and liquid argon (LAr)

for low-background neutrino physics

Noble liquid detectors have risen to be a leading technology in low-energy rare event searches over the past ~decade (WIMP dark matter, 0vββ decay)

Physics: Neutrino-less double beta (0vββ) decay

[Schechter and Valle, PRD 25 (1982) 2951]

observation of 0vββ decay:

- massive, Majorana neutrinos
- lepton number violation

$0v\beta\beta$ rate

• absolute neutrino mass (model dependent)

$0\nu\beta\beta$ decay: what we measure

 \rightarrow look for event excess at the $2v\beta\beta$ endpoint, Q

Physics: search for WIMP dark matter

arXiv:1310.8327v2 [hep-ex]

Underlying concept:

 Apply detector design concepts developed for low energy neutrinos to searches for WIMPs and 0vββ decay

Strenghts:

- Powerful combination of low energy threshold, energy resolution, event ID
- LXe/LAr are excellent scintillators
- Background discrimination (technique-specific)
- Scalability
- Inline purification
- Large 'empty' volume filled with clean LXe/LAr
- 'Dirty' components pushed away from fiducial volume (self-shielding)
- Lightweight structure, selected materials

$0\nu\beta\beta$ decay:

β/γ discrimination

WIMP direct detection:

• nuclear / electron recoil discrimination

Single phase LXe: XMASS

- WIMPs, 0vββ decay, solar neutrinos
- 835 kg of LXe
- 630 PMTs
- Feature: relative simplicity
- Limitation: limited discrimination
- Key requirements:
 - low external background
 - low radon
 - fiducialization

Single phase LAr: DEAP-3600

slide courtesy of Fabrice Retière (adapted)

WIMP search

Distinguish nuclear from electron recoils by Pulse Shape Discrimination (PSD) of the scintillation signal

(very powerful in Argon)

Andrea Pocar - UMass Amherst & Princeton

The Enriched Xenon Observatory (EXO)

Search for 0vββ decay of ¹³⁶Xe (Q=2458 keV) with enriched xenon TPC's (with scintillation readout) of increasing sensitivity and size

Enrichment is relatively simpler and less expensive

10% --> 80-90% proven on the 100's kg scale

Continuous re-purification possible

from electronegative, radioactive contaminants

Xenon is reusable

• could be transferred between experiments

Monolithic detector, remarkable self-shielding

Good (enough) energy resolution

with combined scintillation + ionization

$\beta\beta/\gamma$ discrimination

event topology

Limited cosmogenic activation

longest-lived 4 minutes

The Enriched Xenon Observatory (EXO)

Search for 0vββ decay of ¹³⁶Xe (Q=2458 keV) with enriched xenon TPC's (with scintillation readout) of increasing sensitivity and size

Enrichment is relatively simpler and less expensive

10% --> 80-90% proven on the 100's kg scale

Continuous re-purification possible

• from electronegative, radioactive contaminants

Xenon is reusable

• could be transferred between experiments

Monolithic detector, remarkable self-shielding

Good (enough) energy resolution

with combined scintillation + ionization

$\beta\beta/\gamma$ discrimination

event topology

Xenon admits a novel coincidence technique

• Ba daughter tagging M. Moe, PRC 44, R931 (1991)

Limited cosmogenic activation

longest-lived 4 minutes

The EXO-200 detector at WIPP (~1,500 m.w.e.)

Andrea Pocar - UMass Amherst & Princeton

The EXO-200 Time Projection Chamber (TPC)

- \sim 150 kg ^{enr}LXe
- Cathode in center
- Light detected by APDs on end caps
- Charge detected by crossed u- and v-wire planes

- v-wire plane measures induction
- u-wire plane collects charge
- Energy from u-wire and APD signals

JINST 7 (2012) P05010

Tracking and event topology

Energy resolution

Andrea Pocar - UMass Amherst & Princeton

NNN15 — Stony Brook University — 10.28-31.15

January 2010

 EXO-200 detector:
 JINST 7 (2012) P05010

 Characterization of APDs:
 NIM A608 68-75 (2009)

 Materials screening:
 NIM A591, 490-509 (2008)

January 2010

 EXO-200 detector:
 JINST 7 (2012) P05010

 Characterization of APDs:
 NIM A608 68-75 (2009)

 Materials screening:
 NIM A591, 490-509 (2008)

EXO-200 Inner Detector

the EXO-200 TPC

Andrea Pocar - UMass Amherst & Princeton

Phase I, Run 2: precision measurement of $2\nu\beta\beta$

 $T_{1/2}^{2
uetaeta} = (2.165 \pm 0.016(stat) \pm 0.059(syst)) imes 10^{21}
m{yr}$

(longest, yet most precisely (directly) measured 2vββ decay of all 'practical' isotopes)

Search for 0vββ decay (¹³⁶Xe exposure: 100 kg yr)

[Nature, 510, 229-234 (2014)]

Phase I, Run2: search for 0vββ decay of ¹³⁶Xe

[Nature, 510, 229-234 (2014)]

 $\begin{array}{l} \mbox{EXO-200 limit:} \\ T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{25} \ {\rm yr} \ \left(90\% \ {\rm C.L.}\right) \\ < m_{\beta\beta} > = 190 - 450 \ {\rm meV} \end{array}$

EXO-200 sensitivity: $T_{1/2}^{0
u\beta\beta} = 1.9 \times 10^{25} \text{ yr}$

> [GERDA: PRL 111, 122503 (2013)] [KL-Zen: PRL 110, 062502 (2013)]

Xenon purity from electronegative species - Run 2

Xenon gas is forced through heated Zr getter by a custom ultraclean pump.

Ultraclean pump: *Rev. Sci. Instr. 82 (10) 105114* Xenon purity with mass spec: *NIM A675 (2012) 40* Gas purity monitors: *NIM A659 (2011) 215* At $\tau_e = 3$ ms:

- drift time <110 μs
- loss of charge:
 - 3.6% at full drift length

Radon products and alphas

ionization

1100

Time (us)

1200

1400

1300

From EXO-200 to nEXO

EXO-200 performance and backgrounds guided the decision to design a large LXe "discovery" detector: **nEXO**

- 5 tonnes of enriched LXe
- enhanced self-shielding
- x100 better T_{1/2} sensitivity
- < 1% energy resolution
- no central cathode
- ≥ 10 ms electron lifetime

the range of a 2.5 MeV γ-ay in LXe is 8.5 cm

nEXO conceptual design (SNOLab)

- APDs -> SiPMs
- ~x100 better half-life sensitivity than EXO-200
- in-LXe electronics
- no plastics
- ~600 Rn atoms
- 100 kV

NSAC Long Range Plan calls for a US-led 0vββ decay experiment

EXO-200 and nEXO Physics Sensitivity

From $0\nu\beta\beta$ decay to WIMPS

Dual phase LXe: leaders for WIMP searches

The three best results for heavy (m > few tens GeV/c²) WIMP-nucleon spin-independent cross section are obtained with dual-phase LXe/LAr TPCs

Dual-phase LAr/LXe TPC

slide courtesy of Ethan Brown (adapted)

- Nuclear/electron recoil excite and ionize the LXe/LAr, producing scintillation light (S1)
- The electrons are extracted into the gas region, where they induce **electroluminescence** (S2)
- 3D position reconstruction
- Recoil discrimination (S2/S1, PSD on S1)

LUX -> LZ (LUX + Zeplin) program at Sanford Lab

Pulse Shape Discrimination (S1) in LAr

Electron and nuclear recoils produce different excitation densities in the argon, leading to different **ratios of singlet and triplet excitation states**

Andrea Pocar - UMass Amherst & Princeton

ArDM at Canfranc

- Direct search for Dark Matter particles with liquid argon
- First ton-scale LAr detector (proof for much larger detectors)
- ArDM Run I in single phase mode recently completed

ArDM: Background studies - MC model with a full optical photon ray tracing

Future plans: - proceed with analyses of the full data set - prepare dual phase run for 2016

Andrea Pocar - UMass Amherst & Princeton

The DarkSide program

Search for heavy WIMPs (>100 GeV/c²) with (low ³⁹Ar) TPCs of increasing sensitivity and size

Continuous re-purification possible

from electronegative, radioactive contaminants

Argon is reusable

can be transferred between experiments

Monolithic detector, remarkable self-shielding

Nuclear/electron discrimination

- pulse shape discrimination
- charge-to-light ration
- event topology

Identified source of low ³⁹Ar argon

DarkSide: path towards the "neutrino floor"

DarkSide 50

1,000-tonne Water-based Cherenkov **Cosmic Ray Veto**

30-tonne Liquid Scintillator

Neutron and y's Veto

Inner detector **TPC**

6

DS50 Commissioning (Oct. 2013)

DarkSide-50: LY (electron recoils)

- ³⁹Ar (565 keV_{ee} endpoint) present in AAr
- ^{83m}Kr gas deployed into detector (41.5 keV_{ee})

Fits to ³⁹Ar and ^{83m}Kr spectrum indicate LIGHT YIELD: **7.9 ± 0.4** PE/keV_{ee} at zero field and **7.0 ± 0.3** PE/keV_{ee} at 200 V/cm

Andrea Pocar - UMass Amherst & Princeton

Phys. Lett. B 743, 456 (2015)

Underground Ar

1. Extraction at Colorado (CO₂ Well) Extract a crude argon gas mixture (Ar, N₂, and He)

2. Purification at Fermilab Separate Ar from He and N₂

3. Arrived at LNGS Ready to fill into DS-50

UAr First Results

AAr vs UAr. Live-time-normalized S1 pulse integral spectra at Zero field. ³⁹Ar reduction factor of ~1400

Low level of ³⁹Ar allows extension of DarkSide program to ton-scale detector.

71 live-days after all cuts. (2616±43) kg day exposure. Single-hit interactions in the TPC, no energy deposition in the veto.

Argon purity - very promising results from DS-50

- Closed loop argon recirculation (~30 slpm)
- Gaseous phase purification using commercial getter
- Cryogenic charcoal trap to remove Rn contamination

Measured electron drift lifetime > 5 ms

to be compared to max. drift time of ~ 375 μs

- no PMTs —> SiPMs (15 m²)
- 50 kV
- 2.4 m drift length
- 100 tonne yr exposure

 ArDM facility to test tonnescale UAr batches

DS-20k 30 tonne (20 tonne fiducial) detector

Urania (Underground Argon):

- Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 100 kg/day of Underground Argon
- Aria (UAr Purification):
 - Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon

ARGO - a flight of fancy to the neutrino floor

• no PMTs —> SiPMs (15 m²)

- 300 t UAr (200 t fiducial)
- 1,000 tonne yr exposure
- Cryogenically depleted UAr
- Further x10 discrimination with ~15% LY increase

- Background-free heavy WIMP search to the neutrino floor
- Sensitivity 9×10⁻⁴⁹ cm² @1 TeV/cm²
- Solar neutrino program

Heavy WIMP sensitivity

Experiment	σ [cm ²] @1 TeV/c ²	σ [cm ²] @10 TeV/c ²
LUX [10k kg×day Xe]	1.1×10-44	1.2×10-43
XENON [7.6k kg×day Xe]	1.9×10-44	1.9×10-43
DS-50 [1.4k kg×day Ar]	2.3×10-43	2.1×10-42
ArDM [1.5 tonne×yr Ar]	7×10-45	7×10-44
DEAP-3600 [3.0 tonne×yr Ar]	5×10-46	5×10-45
XENON-1ton [2] [2.7 tonne×yr Xe]	3×10-46	3×10-45
LZ [1] [15 tonne×yr Xe]	5×10-47	5×10-46
DS-20k [100 tonne×yr]	9×10-48	9×10-47
1 Neutrino Event [400 tonne×yr Ar or 300 tonne×yr Xe]	2×10-48	2×10-47
ARGO [1,000 tonne×yr]	9×10-49	9×10-48

nEXO and DS-20k

Similarities:

- Long drift length (~1.5 m)
- Need for very high light collection efficiency, use SiPMs (4 15 m²)
- Need for very low radon
- >10 ms life time of drifting electrons
- Cold front-end electronics
- Data-driven background model (informed by radio-assay results)
- Isotopic enrichment/depletion
- Low ⁸⁵Kr, ³⁹Ar: centrifugation, cryogenic distillation
- Common challenges: HV, internal low-E calibrations,

Differences (nEXO vs DS-20k):

- nEXO: 'no' plastics
- Single- vs dual-phase
- Energy resolution vs energy threshold
- Integral vs time resolution (PSD) of S1 (affects SiPM readout)

The DarkSide program

Andrea Pocar - UMass Amherst & Princeton

Oct 0

Jul 02

2012

2011

Apr 02

2013

Dec 3

2012

Oct 01

Jul 02

- LXe and LAr detectors, TPCs in particular, have become leading players in the search for $0v\beta\beta$ decay and WIMP dark matter
- Currently running TPCs are at the few hundred kg scale; tonne scale experiments are coming soon
- There is substantial synergy between LXe and LAr TPCs for rare event searches, both in terms of detector technology and low background requirements
- nEXO (5 tonnes) will search for 0vββ decay with mass sensitivity to cover the inverted neutrino hierarchy
- Detectors of tens and even hundreds of tonnes are being planned to search for WIMPs down to the neutrino floor

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — S Delaguis, J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA – P Vogel Carleton University, Ottawa ON, Canada – Y Baribeau, V Basque, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA - C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA – MJ Dolinski, YH Lin, E Smith, T Winick, Y-R Yen Duke University, Durham NC, USA – PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea - DS Leonard IHEP Beijing, People's Republic of China – G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao University of Illinois, Urbana-Champaign IL, USA – D Beck, M Coon, J Walton, L Yang Indiana University, Bloomington IN, USA – JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer University of California, Irvine, Irvine CA, USA – M Moe ITEP Moscow, Russia – V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich Laurentian University, Sudbury ON, Canada – B Cleveland, A Der Mesrobian-Kabakian, J Farine, B Mong, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA – O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA – J Dalmasson, S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal PQ, Canada – T Brunner Oak Ridge National Laboratory, Oak Ridge TN, USA – L Fabris, D Hornback, RJ Newby, K Ziock Rensselaer Polytechnic Institute, Troy NY, USA - E Brown SLAC National Accelerator Laboratory, Menlo Park CA, USA — T Daniels, K Fouts, G Haller, R Herbst, M Kwiatkowski, K Nishimura, A Odian, M Oriunno, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA - R MacLellan Stanford University, Stanford CA, USA – R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, K Twelker, M Weber Stony Brook University, SUNY, StonyBrook, NY, USA – K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — P Fierlinger, M Marino

TRIUMF, Vancouver BC, Canada – J Dilling, P Gumplinger, R Krücken, F Retière, V Strickland

DarkSide-20k and Argo Lol Signatories

D. Franco, A Tonazzo - APC Paris

- D. Alton Augustana College
- A. Kubankin Belgorod National Research University
- K. Keeter, B. Mount Black Hills State University
- L. Romero, R. Santorelli CIEMAT
- S. Horikawa, K. Nikolics, C. Regenfus,
- A. Rubbia ETH Zürich
- S. Pordes Fermilab
- A. Gola, C. Piemonte FBK & TIFPA
- S. Davini GSSI
- E. Hungerford, A. Renshaw University of Houston
- M. Guan, J. Liu, Y. Ma, C. Yang, W. Zhong IHEP Beijing
- N. Canci, F. Gabriele, G. Bonfini, A. Razeto, N. Rossi, F. Villante - LNGS
- C. Jollet, A. Meregaglia IPHC Strasbourg
- M. Misziazek, M. Woicik, G. Zuzel Jagiellonian University
- K. Fomenko, A. Sotnikov, O. Smirnov JINR
- M. Skorokhvatov Kurchatov Institute Moscow
- A. Derbin, V. Muratova, D. Semenov,
- E. Unzhakov PNPI Saint Peterburg
- S. De Cecco, C. Giganti LPNHE Paris
- H. O. Back PNNL
- M. Ghioni, A. Gulinatti, L. Pellegrini, I. Rech, A. Tosi,

F. Zappa - Politecnico di Milano
C. Galbiati, A. Goretti, A. Ianni, P. Meyers,
M. Wada - Princeton University
A. Chepurnov, G. Girenok, I. Gribov, M. Gromov,
I. Zilcov - SINP MSU Moscow
C.J. Martoff, J. Napolitano, J. Wilhelmi - Temple
University
E. Pantic - UCDavis
Y. Suvorov, H. Wang - UCLA
A. Pocar - UMass Amherst

- A. Machado, E. Segreto Campinas
- A. Devoto, M. Lissia, M. Mascia,
- S. Palmas Università & INFN Cagliari
- M. Pallavicini, G. Testera, S. Zavatarelli Università & INFN Genova
- D. D'Angelo, G. Ranucci Università & INFN Milano
- F. Ortica, A. Romani Università & INFN Perugia
- S. Catalanotti, A. Cocco, G. Covone, G. Fiorillo,
- B. Rossi Università Federico II & INFN Napoli
- C. Dionisi, S. Giagu, M. Rescigno Università La Sapienza & INFN Roma
- S. Bussino, S. Mari Università & INFN Roma 3
- J. Maricic, R. Milincic, B. Reinhold University of Hawaii
- P. Cavalcante Virginia Tech