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Overview of Beam Optimization

Target Hall

To Neutrino Detectors

+ Conventional neutrino beamlines have a lot of configurable parameters

+ Primary proton beam parameters, off -axis angle

+ Target shape, size and material |

target/rx

+ Focusing horn shape and placement

+ Dimensions of decay volume Horn 2



Overview of Beam Optimization

+ First: what exactly do we mean by beam
optimization?

+ Can be factorized into two pieces:

+ Optimizing the number of protons
on target

+ Doing the best you can with your
protons



Overview of Beam Optimization

This is a pretty
straightforward (if difficult

+ First: what exactly do we mean by beam to solve!) problem — we
optimization? always want more protons

+ Can be factorized into two pieces

; There are big efforts at all
/ neutrino beamlines to
+ Maximizing the number of

increase beam power

protons on target

+ Doing the best you can with your
protons



Overview of Beam Optimization

+ First: what exactly do we mean by beam
optimization?

+ Can be factorized into two pieces: This is has a less obvious
solution, but can be very cost
effective and is the primary
focus of my talk today

+ Maximizing the number of
protons on target

+ Doing the best you can with your——»
protons

Although it is of course coupled
to beam power — the focusing
system has to be able to
withstand the many stresses
created by the proton beam




Overview of Beam Optimization

+ The next question: what exactly is “the best” beam?
+ Also not a straightforward question

+ Ideally, it would mean the beam that gives the best physics measurements
but:

+ We always want to make a bunch of measurements with one beam, so
have to choose one (or a very small number) of quantities to maximize

+ Have to take into account cost and engineering limitations

“Beam Optimization” is clearly a complicated concept

For the purposes of this talk, it primarily means: “How do we
maximize our physics per proton”

And I'm going to focus on the physics of neutrino oscillations



Overview of Beam Optimization

+ How most beams have been configured:

+ Choose the energy region where
you want to study neutrinos
(frequently the region where you
want to look for neutrino
oscillations)

+ Identify designs that maximize
neutrinos in the region using basic
simulations of the beam and
calculations, balancing neutrino
yield against:

+ Technical feasibility

<+ Cost

v,—>Ve oscillation
probabilities for the
LBNF/DUNE baseline
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Overview of Beam Optimization

+ This strategy has been a huge success!
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Overview ol Beam Optimization

+ But we are entering a new era for 80
two reasons

60

+ Advances in computing

40

power have made it feasible
to do detailed simulations of
many, many beam options

+ And to simulate not just
the number of expected
neutrinos, but

how how well
each beam accomplishes
many different
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Overview of Beam Optimization

<+ Also, intense neutrino beams
mean we have to worry about a
lot more than signal statistics

+ High energy and wrong sign
backgrounds, systematic
uncertainties, energy
resolution
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Overview ol Beam Optimization

+ What we’d like to do is to simulate a bunch of beam configurations,

estimate the physics performance of each configuration, and pick the best
one

CP violation sensitivity
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+ But considering e.g. just 20 parameters, each with 20 possible values,
scanning over the available phase space would take much longer than
the lifetime of the universe, even with very fast simulations.
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Overview of Beam Optimization

+ We can speed things up with modern algorithms, e.g. a genetic algorithm:

+ This algorithm views each beam configuration as an organism; initially, a
population with randomly generated traits is simulated

+ Configurations are judged based on fitness (number of neutrinos or some physics
deliverable) and mated together to form new (and better) configurations
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Overview ol Beam Optimization

+ Repeating this survival-of-the-fittest procedure over many generations
eventually converges on a optimal beam design
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LBNF/DUNE
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[.BNF Overview

+ “First truly international mega-science project hosted in the United
States”

Primary Beam Enclosure
Apex of Embankment ~ 60’

MI-10 Point of Extraction

Near Detector Absorber Hall Target Hall Complex .
Kirk Service Building Service Building (LBNF-20) P""f‘a")' B.ea.m
(LBNF-40) (LBNF-30) Service Building

Absorber Hall (LBNF-5)
and Muon Alcove

ROCK

3 i N—0 Target (MCZero)
Baseline design uses (2) NuMI aale s, || , S S o i o8
horns and NuMI-like target : enclosure

|

120 GeV
Protons

—>

+ 60-120 GeV protons from Fermilab’s Main Injector, to DUNE
detectors in Illinois and South Dakota 17



LLBNF Beam Optimization

+ Has also implemented a genetic algorithm that optimizes a fast approximation of CP
sensitivity
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Considered dramatically different first
focusing horn shape (knownto
etfectively focus low energy particles
and based on previous work by T2K and
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primary proton beam and second
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LLBNF Beam Optimization

+ Improved performance of optimized beam:
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DUNE Beam Optimization

+ Preferred beam has significant changes from baseline design:

%,
i

Horn 1 /

¥ -

Horn 2

‘

3 Baseline

Decay Pipe

—

e ° Optimized
Decay Pipe

Horn 1

Horn 2 a

Substantial changes to the shape,
size and position of horns —
longer and wider horns

A much
1 m in baseline)

(>1.5mvs

Larger target chase (~20 m)
needed to accommodate
optimized horns (now included
in baseline design)

Target transverse dimensions
and proton beam not
substantially altered

20



DUNE Beam Optimization

+ Plans to increase beam power:

PIP-1l replaces upstream portion of F

: . urther upgrades (PIP-111) would
linac feeding into 8 GeV Booster:

replace booster with Rapid Cycling
1.03 MW at 60 GeV Synchrotron (RCS) or SC Linac.

1.07 MW at 80 GeV Currently in R&D stage.
1.20 MW at 120 GeV

> 2.0 MW at 60 GeV
Ready by 2025 > 2.3 MW at 120 GeV

24 /35

M. Bishai HINT2015
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BNDB
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BNB Overview
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+ BNB provides beam for MicroBooNE
+ And eventually to SBND and ICARUS

+ Utilizes an 8 GeV proton beam and a single focusing horn -



BNB Beam Optimization

+ Optimization strategy

+ Identify upgrade options that fit within current enclosure

with minimal changes (single horn, less than 3.5 m long)
and cost < ~ $6 M

+ Used a genetic algorithm optimizing total number of events:
+ A relatively small number of parameters (~10)

+ A streamlined simulation of the beam line using simple
tracking and reuse of decaying hadrons

24



BNB Beam Optimization

+ Option 1:

+ A new horn with modified inner conductor shape, but
length equal to the current horn
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BNB Beam Optimization

+ Option 2:

+ A longer horn with modified inner conductor shape

Increases flux in peak by up to
~50% depending on current
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Total increase in peak flux is up to 200%, adding in proposed upgrades to
power supplies that would enable opportunistic use of Fermilab protons (up
to 15 Hz from 5 Hz). All options currently under further study by BNB team *°



J-PARC Neutrino Beamline
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J-PARC Neutrimo Beamhne Overview

Near Detectors Beam Dump Decay Volume Target Station .
= Primary
- TN = . [ 3 Horns protons _
- a = : < ' e Beaml ine
- =) S et > : 3
0 /
/ _ Target
y Monit “plons J-PARC MR
uon Monitor e TGS

-«— neutrinos

<+ 30 GeV Proton beam

* Three horn focusing
system

+ Provides beam T2K
detectors (INGRID,
ND280, Super
Kamiokande)
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J-PARC Neutrimo Beamhne Overview

+ The same beam will host the proposed Hyper-

Kamiokande experiment:

e Facility
) . C
- A, Tokai)

Slightly
different
location than
Superk,
Same off-axis
angle
25 times
larger fiducial
volume
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J-PARC Neutrimo Beamhne Overview

+ Beam Upgrade Plans

+ Much effort focused on improving beam power

Beam Power # of protons/pulse Rep. rate
350 kW (achieved) 1.8x10 2.48 sec.
750 kW (proposed) 2.0x10% 1.30 sec.

[original plan] [3.3%x10] [2.10 sec.]
1.3 MW (proposed) 3.2x10 1.16 sec.

+ Running at 1.3 MW will require many beam upgrades, such as:

+ New cooling water pumps
+ Improved stripline cooling
+ Removal of hydrogen produced in horns

+ Radiation studies, Reinforcement of air-tightness

T. Sekiguchi HINT2015
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J-PARC Neutrimo Beamhne Overview

+ Also planning to increase horn currents:

Horn current
+ 250 kA operation for physics data taking since 2010.

Mainly due to refurbishment of old K2K PS (rated 250 kA).

Current increase: 250 kA = 320 kA (rated) "ﬂ
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Other horn and target configuration studies ongoing, but not yet public
Have also considered alternate off-axis angles 31



NuStorm
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NuStorm Overview

+ Not a conventional neutrino beam, but still a cool example of neutrino

beam optimization:

-t
Target+Horn Pion Beamline OCS | Absorber

. OCS Producticzn> straight Eor n_ -

L ND FD

! 50 m : 2 km |

I(-—-)(——-PI
1 I 1

Design in NuStorm proposal included a
single NuMI horn to collect pions

Outer Conductor

120 GeV
protons

Solid Target Inner Conductor

Very well
understood fluxes,
lower backgrounds,

for neutrino cross
sections and sterile
searches

Neutrinos from both

ut — et vyve and
+ +
™ — ut vy
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NuStorm Overview

+ Not a conventional neutrino beam, but still a cool example of neutrino
beam optimization:

-t
Target+Horn Pion Beamline OCS | Absorber

. OCS Productic_)a straight Eor n_ -

L ND FD

! 50 m : 2 km |

I(-—-)(——-PI
1 I 1

Key requirement of focusing horn: collect pions that will decay to
muons that are within the angular and momentum acceptance of the
muon beamline

Quite a different situation than NuMI

(for which the horn was designed)
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NuStorm Optimization

+ Developed fast horn-shape optimization metric that only requires tracking
pions to end of horn, and implemented a “multi-objective” genetic algorithm:

The best horn at generation 81

« 10° Evolution of Objectives, 38 cm Inconel 200

S |
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ey )
5 B S
8 8 50 |
A0
= B
Z

I
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Objective 1: N__ x10° Z (mm)

Number of muons within angular Nucl.Instrum.Meth. A794 (2015) 200-205

acceptance
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NuStorm Optimization

+ Another idea: “Pion Injection Line”: eliminate muon storage ring and
optimize just pion straight

Target + horn

7AN

Pion beam line

OCS

Production straight section

-l
T

+ Becomes feasible to consider for long-baseline

experiments

+ Well understood flux (measured by

beamline)

+ Optimization ongoing now

Ao’s new FODO PIL

OCS Absorber
mirror n

nu_mu events from a FODO nuPIL lattice (blue) v.s. from the nuSTORM pion beamline (red), and DUNE (light green)

61e9
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Conclusion

+ Neutrino Beamline Optimization is a subject
+ And one with big payoffs

+ Modern computing power and algorithms, plus clever simulation shortcuts
are showing us how to dramatically improve existing and future beamlines

+ Requires that extensive engineering studies proceed in parallel with
simulations

+ Beamline optimization offers benefits beyond just increases in flux
+ Background reduction, more desirable energy spectra, etc

* And can be an economical alternative to increasing detector size or

protons on target -



Thank You!
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NuStorm Acceptance

+ Transverse acceptance:

+ 2000 um rad (or expressed as 2 mm)And one with big payoffs
+ Momentum Acceptance:

+ +/-10% of 5 GeV /¢ for pions and 3.8 GeV /¢ for muons

+ The number of pions within +/-10% of 5 GeV /¢ after the horn is 0.29 /
POT

+ The number of muons within the acceptance of the ring is 0.013 per POT.

+ Optimization increases this to 0.015
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