Testing SUSY SO(10) at the LHC

Stuart Raby

NNNI5/UD2 Stony Brook October 28, 2015

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis Fits Predictions Fine-tuning Conclusions

SO(10) Grand Unification

Soft SUSY breaking terms

 m_{16}^2 Universal scalar masses $m_{10}^2 \pm \Delta m_H^2 \rightarrow NUHM2$ A_0 Universal A parameter, μ , tan β $\overline{M}_{i}(\lambda_{i}\lambda_{i}), i=1,2,3$ $M_{i} = \left(1 + \frac{g_{G}^{2} b_{i} \alpha}{16 \pi^{2}} \log\left(\frac{M_{Pl}}{m_{16}}\right)\right) M_{1/2}$ $\alpha = 0$ Universal or $\alpha \neq 0$ "Mirage" $m_{16}, m_{10} \pm \Delta m_{H}^{2}, A_{0}, M_{1/2}(\alpha), \mu, \tan \beta$

Yukawa Unification & Soft SUSY breaking

Blazek, Dermisek & Raby PRL 88, 111804 (2002) PRD 65, 115004 (2002) Baer & Ferrandis, PRL 87, 211803 (2001) Auto, Baer, Balazs, Belyaev, Ferrandis & Tata JHEP 0306:023 (2003) Tobe & Wells NPB 663, 123 (2003) Dermisek & Raby Phys. Lett. B 622, 327 (2005) Baer, Kraml, Sekmen & Summy JHEP 0909:005 (2009) Anandakrishnan, Raby & Wingerter arXiv:1212.0542 Anandakrishnan & Raby arXiv: 1303.5125 Anandakrishnan, Bryant & Raby arXiv:1404.5628 Poh & Raby arXiv: 1505.00264

 $\lambda 16_{3}1016_{3}$ $\lambda_t = \lambda_b = \lambda_\tau = \lambda_v \equiv \lambda$

Note, CANNOT predict top mass due to large SUSY threshold corrections to bottom and tau mass Hall, Rattazzi & Sarid Carena, Olechowski, Pokorski & Wagner So instead use Yukawa unification to predict soft SUSY breaking masses !!

Bottom mass corrections

 $\frac{\delta m_b}{m_b} \propto \frac{\alpha_3 \mu M_g \tan \beta}{m_{\tilde{h}}^2} + \frac{\lambda_t^2 \mu A_t \tan \beta}{m_t^2} + \log corr.$ $\frac{\delta m_b}{m_b} \leq -2\%$ Needed to fit data $\mu M_g > 0 \quad \Rightarrow \quad \mu A_t < 0$

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis Fits Predictions Fine-tuning Conclusions

Anandakrishnan, Raby & Wingerter arXiv:1212.0542 Anandakrishnan, Bryant & Raby arXiv:1404.5628

Global
$$\chi^2$$
 analysis
3rd family only

Yukawa Unification

 $\lambda 16_{3} 10 16_{3}$

~ Universal Gaugino Masses

Fit t, b, tau requires

 $A_0 \approx -2m_{16} \quad m_{10} \approx \sqrt{2}m_{16}$ $m_{16} > few \, \text{TeV} \qquad \mu, M_{1/2} << m_{16}$ $\tan \beta \approx 50$

Inverted scalar mass hierarchy

Bagger, Feng, Polonsky & Zhang PLB473, 264 (2000) Third family scalars lighter than first two !

Suppresses flavor & CP violation

 $A_0 \approx -2m_{16} \quad m_{10} \approx \sqrt{2}m_{16}$ $m_{16} > few \, \text{TeV} \quad \mu, M_{1/2} << m_{16}$ $\tan \beta \approx 50$

Need Heavy scalars !

$BR(B \to X_s \gamma) = (3.55 \pm 0.26) \times 10^{-4} \text{ Exp.}$ $BR(B \to X_s \gamma)_{SM} = (3.15 \pm 0.23) \times 10^{-4} \text{ NNLO Th.}$

 $C_7^{\chi^+} \propto \frac{\mu A_t}{m^2} \tan \beta \times \operatorname{sign}(C_7^{SM}) \approx \begin{cases} -2C_7^{SM} \\ 0 \end{cases}$

$\mu M_g > 0 \implies \mu A_t < 0$ $m_{16} \sim 4 - 5 \text{ TeV}$ light squarks and sleptons !!

 $C_7^{\chi^+} \approx -2C_7^{\text{SM}}$ or $C_7 = C_7^{\text{SM}} + C_7^{\chi^+} \approx -C_7^{\text{SM}}$

LHCb BR(B \rightarrow K^{*} μ^+ μ^-) favors C₇ $\approx + C_7^{SM}$

tension between $b \rightarrow s \gamma \xi b \rightarrow s l^{+}l^{-}$

Albrecht, Altmannshofer, Buras, Guadagnoli, & Straub JHEP 0710:055 (2007)

 $C_7^{\chi^+} \approx 0$ or $C_7 = C_7^{\text{SM}} + C_7^{\chi^+} \approx + C_7^{\text{SM}}$

 $m_{16} \ge 8 \text{ TeV}$

Albrecht, Altmannshofer, Buras, Guadagnoli, & Straub JHEP 0710:055 (2007)

m_{16}	10000
μ	1200
${ m BR}(B_s o \mu^+ \mu^-) imes 10^8$	2.1
\hat{s}_0	0.14
${ m BR}(\mu ightarrow e \gamma) imes 10^{13}$	0.0026
$\delta a_{\mu}^{ m SUSY} imes 10^{10}$	+0.52
M_{h_0}	129
M_A	842
$m_{ ilde{t}_1}$	1903
$m_{\tilde{b}_1}$	2366
$m_{ ilde{ au}_1}$	3933
$m_{ ilde{\chi}_1^0}$	60
$m_{\tilde{\chi}_1^+}$	120
$m_{ ilde{g}}$	506

Br($B_{2} \rightarrow \mu^{+} \mu^{-}$): Light Higgs SM-like SM: 3×10^{-9} MSSM: ~ $(\tan \beta)^6 / m_A^4$ CDF 1.8 $^{+1.8}_{-0.9} \times 10^{-8} (95\% CL)$ w/ 7 fb⁻¹ *LHCb* $(2.9^{+1.1}_{-1.0}) \times 10^{-9}$ w/ 1 fb⁻¹ (7TeV) + 2 fb⁻¹ (8TeV) $m_A \geq 1 \text{ TeV}$ $m_A \sim m_H \sim m_{H^{\pm}} \implies h$ SM-like

Summary First order results Third family only

- Universal scalar masses > 8 TeV
- Third family scalars much lighter
- Light Higgs is SM-like
- Gluino mass < 2.4 TeV

Gluino mass bound – Third family only Anandakrishnan, Raby & Wingerter

 $m_{16} = 20 \text{ TeV}, M_{1/2} \text{ varied } -> 2 \text{ d.o.f.}$

Three family model gives good fits to low energy data

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis - 3 families Fits Predictions Fine-tuning Conclusions

3 Family SO(10) + family symmetry

Dermisek & Raby PLB 622:327 (2005).

Dermisek, Harada & Raby PRD74, 035011 (2006)

Albrecht, Altmannshofer, Buras, Guadagnoli & Straub JHEP 0710:055 (2007) Anandakrishnan, Raby & Wingerter arXiv:1212.0542

Poh & Raby

arXiv:1505.00264

3 family SO10 SUSY Model

D₃ x U(D) Family Symmetry
 Superpotential
 YuKawa couplings
 Global χ² analysis
 Charged fermion masses \$ mixing
 Neutrino masses \$ mixing

Superpotential for charged fermion Yukawa couplings

$$W_{ch.fermions} = 16_{3}1016_{3} + 16_{a}10\chi_{a}$$

+ $\overline{\chi_{a}}\left(M_{\chi}\chi_{a} + 45\frac{\phi_{a}}{M}16_{3} + 45\frac{\phi_{a}}{M}16_{a} + A16_{a}\right)$
 $\langle\phi\rangle = \begin{pmatrix}\phi_{1}\\\phi_{2}\end{pmatrix}$ $\langle45\rangle = (B-L)M_{G}$
 $\langle\phi\rangle = \begin{pmatrix}0\\\phi_{2}\end{pmatrix}$ $M_{\chi} = (1 + \alpha \langle X \rangle + \beta \langle Y \rangle)M$

Familon VEVs assumed

SO(10) x (D_3 x U(1) family sym.) Yukawa Unification for 3^{rd} Family

7 real para's + 4 phases

Dermisek & Raby PLB 622:327 (2005)

$$Y_{u} = \begin{pmatrix} 0 & \epsilon' \rho & -\epsilon \xi \\ -\epsilon' \rho & \tilde{\epsilon} \rho & -\epsilon \\ \epsilon \xi & \epsilon & 1 \end{pmatrix} \lambda$$

$$Y_{d} = \begin{pmatrix} 0 & \epsilon' & -\epsilon \xi \sigma \\ -\epsilon' & \tilde{\epsilon} & -\epsilon \sigma \\ \epsilon \xi & \epsilon & 1 \end{pmatrix} \lambda$$

$$Y_{e} = \begin{pmatrix} 0 & -\epsilon' & 3 \epsilon \xi \\ \epsilon' & 3 \tilde{\epsilon} & 3 \epsilon \\ -3 \epsilon \xi \sigma & -3 \epsilon \sigma & 1 \end{pmatrix} \lambda$$

$$Y_{\nu} = \begin{pmatrix} 0 & -\epsilon' \omega & \frac{3}{2} \epsilon \xi \omega \\ \epsilon' \omega & 3 \tilde{\epsilon} \omega & \frac{3}{2} \epsilon \omega \\ -3 \epsilon \xi \sigma & -3 \epsilon \sigma & 1 \end{pmatrix} \lambda$$

SO(10) x (D_3 x U(1) family sym.) Yukawa Unification for 3^{rd} Family

 $m_s \simeq \frac{1}{3} m_\mu, \quad \frac{m_s}{m_d} \approx \frac{1}{9} \frac{m_\mu}{m_e} \quad Y_u =$ $\begin{pmatrix} 0 & \epsilon' \rho & -\epsilon \xi \\ -\epsilon' \rho & \tilde{\epsilon} \rho & -\epsilon \\ \epsilon \xi & \epsilon & 1 \end{pmatrix} \lambda$ $\Leftrightarrow \langle \text{B-L} \rangle$ $\begin{pmatrix} 0 & \epsilon' & -\epsilon \ \xi \ \sigma \\ -\epsilon' & \tilde{\epsilon} & -\epsilon \ \sigma \\ \epsilon \ \xi & \epsilon & 1 \end{pmatrix} \lambda$ $Y_d =$ $\left(\begin{array}{cccc}
0 & -\epsilon' & 3 \epsilon \xi \\
\epsilon' & 3 \tilde{\epsilon} & 3 \epsilon \\
-3 \epsilon \xi \sigma & -3 \epsilon \sigma & 1
\end{array}\right) \lambda$ $\frac{m_u}{m_d} \le 1, \quad \frac{m_t}{m_b} \gg 1$ $Y_e =$ $\rho \propto \beta \langle \mathbf{Y} \rangle \quad Y_{\nu} = \begin{pmatrix} 0 & -\epsilon' \,\omega & \frac{3}{2} \,\epsilon \,\xi \,\omega \\ \epsilon' \,\omega & 3 \,\tilde{\epsilon} \,\omega & \frac{3}{2} \,\epsilon \,\omega \\ -3 \,\epsilon \,\xi \,\sigma & -3 \,\epsilon \,\sigma & 1 \end{pmatrix} \lambda$

and the second second

Extend to neutrino sector

 $W_{neutrino} = \overline{16} \left(\lambda_2 N_a 16_a + \lambda_3 N_3 16_3 \right)$ $+\frac{1}{2}(S_aN_aN_a+S_3N_3N_3)$

 $\langle S_a \rangle = M_a \quad \langle S_3 \rangle = M_3 \quad \langle \overline{16} \rangle = v_{16}$ Assume 3 new real para's

$$W_{neutrino} = v m_{v} v + v V N + \frac{1}{2} N M_{N} N$$

$$m_{v} = Y_{v} \frac{v}{\sqrt{2}} \sin \beta$$

$$M_{R} = V M_{N}^{-1} V^{T} \equiv \text{diag}(M_{R_{1}}, M_{R_{2}}, M_{R_{3}})$$

$$M_{R_{1}} = (\lambda_{2} v_{16})^{2} / M_{2},$$

$$M_{R_{2}} = (\lambda_{2} v_{16})^{2} / M_{1},$$

$$M_{R_{3}} = (\lambda_{3} v_{16})^{2} / M_{3}$$

$$M_{v} = U_{e}^{T} \left(m_{v} M_{R}^{-1} m_{v}^{T} \right) U_{e}$$

Global χ^2 analysis

Sector	#	Parameters
gauge	3	$\alpha_G, M_G, \epsilon_3,$
SUSY (GUT scale)	5	$m_{16}, M_{1/2}, A_0, m_{H_u}, m_{H_d},$
textures	11	$\epsilon, \epsilon', \lambda, ho, \sigma, ilde{\epsilon}, \xi,$
neutrino	3	$M_{R_1}, M_{R_2}, M_{R_3},$
SUSY (EW scale)	2	$\tan \beta, \mu$

24 parameters at GUT scale + α for Mirage (well-tempered DM)

45 Low energy observables

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis - 3 families Fits - Poh&Raby arXiv:1505.00264 Predictions Fine-tuning Conclusions

V_{ub}, V_{cb} [inclusive vs exclusive]

35

SUSY non-decoupling

		Pull					
	m_{16}	10	15	20	25	30	
• [M_W	0.2110	0.1878	0.1851	0.2320	0.3981	
	M_h	2.5474	1.1795	0.3454	0.1882	0.6582	
	$BR(B \to \tau \nu)$	1.1978	1.3952	1.3557	1.3588	1.3771	
	$F_L(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	0.2696	0.2488	0.2219	0.2101	0.2057	
	$P'_4(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	1.7066	1.7066	1.7066	1.7066	1.7066	
	$P'_5(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	2.4110	2.3432	2.2746	2.2451	2.2339	
	χ^2	14.1511	8.9744	7.2154	7.0206	7.5220	

		Fit Value					
m_{16}	10	15	20	25	30	Value	
M_W	80.4699	80.4606	80.4595	80.4784	80.5454	80.3850	
M_h	117.9901	122.1303	124.6547	126.2697	127.6920	125.7000	
$BR(B \to \tau \nu) \times 10^5$	6.6329	6.1340	6.2299	6.2223	6.1778	11.4000	
$F_L(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.7434	0.7353	0.7251	0.7207	0.7191	0.6500	
$P'_4(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.8174	0.6711	0.5921	0.5717	0.5657	0.5800	
$P'_4(B \to K^* \mu^+ \mu^-)_{14.18 \le q^2 \le 16 \text{GeV}^2}$	1.2190	1.2190	1.2190	1.2190	1.2190	-0.1800	
$P'_5(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	-0.7301	-0.5529	-0.4625	-0.4335	-0.4235	0.2100	

$$M_{W}$$
 receives contributions to ρ from stops
SUSY does not completely decouple

$$m_{t_1} \approx 5 \text{ TeV}, \quad m_{b_1} \approx 6 \text{ TeV}$$

for $m_{16} \approx 25 \text{ TeV}$

SUSY non-decoupling

	Pull					
m_{16}	10	15	20	25	30	
M_W	0.2110	0.1878	0.1851	0.2320	0.3981	
M_h	2.5474	1.1795	0.3454	0.1882	0.6582	
$BR(B \to \tau \nu)$	1.1978	1.3952	1.3557	1.3588	1.3771	
$F_L(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.2696	0.2488	0.2219	0.2101	0.2057	
$P'_4(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	1.7066	1.7066	1.7066	1.7066	1.7066	
$P'_5(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	2.4110	2.3432	2.2746	2.2451	2.2339	
χ^2	14.1511	8.9744	7.2154	7.0206	7.5220	

		Fit Value					
m_{16}	10	15	20	25	30	Value	
M_W	80.4699	80.4606	80.4595	80.4784	80.5454	80.3850	
M_h	117.9901	122.1303	124.6547	126.2697	127.6920	125.7000	
$BR(B \to \tau \nu) \times 10^5$	6.6329	6.1340	6.2299	6.2223	6.1778	11.4000	
$F_L(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.7434	0.7353	0.7251	0.7207	0.7191	0.6500	
$P'_4(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.8174	0.6711	0.5921	0.5717	0.5657	0.5800	
$P'_4(B \to K^* \mu^+ \mu^-)_{14.18 \le q^2 \le 16 \text{GeV}^2}$	1.2190	1.2190	1.2190	1.2190	1.2190	-0.1800	
$P'_{5}(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	-0.7301	-0.5529	-0.4625	-0.4335	-0.4235	0.2100	

$M_h = \frac{A_t}{M_{SUSY}}$ increases as m_{16} increases

SUSY non-decoupling

	Pull					
m_{16}	10	15	20	25	30	
M_W	0.2110	0.1878	0.1851	0.2320	0.3981	
M_h	2.5474	1.1795	0.3454	0.1882	0.6582	
$BR(B \to \tau \nu)$	1.1978	1.3952	1.3557	1.3588	1.3771	
$F_L(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	0.2696	0.2488	0.2219	0.2101	0.2057	
$P'_4(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	1.7066	1.7066	1.7066	1.7066	1.7066	
$P'_{5}(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	2.4110	2.3432	2.2746	2.2451	2.2339	
χ^2	14.1511	8.9744	7.2154	7.0206	7.5220	

			Fit Value				
	m_{16}	10	15	20	25	30	Value
	M_W	80.4699	80.4606	80.4595	80.4784	80.5454	80.3850
	M_h	117.9901	122.1303	124.6547	126.2697	127.6920	125.7000
	$BR(B \to \tau \nu) \times 10^5$	6.6329	6.1340	6.2299	6.2223	6.1778	11.4000
	$F_L(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.7434	0.7353	0.7251	0.7207	0.7191	0.6500
	$P'_4(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	0.8174	0.6711	0.5921	0.5717	0.5657	0.5800
1/	$P'_4(B \to K^* \mu^+ \mu^-)_{14.18 \le q^2 \le 16 \text{GeV}^2}$	1.2190	1.2190	1.2190	1.2190	1.2190	-0.1800
	$P'_5(B \to K^* \mu^+ \mu^-)_{1 < q^2 < 6 \text{GeV}^2}$	-0.7301	-0.5529	-0.4625	-0.4335	-0.4235	0.2100

$$B \rightarrow K^{+}\mu^{+}\mu^{-}$$

 F_{L}, P_{5}^{+}
receive small correction in right direction

 $C_{7}^{H^{\pm}}$ adds constructively good $C_{7}^{\chi^{\pm}}$ adds destructively bad but decreases as m_{16} increases

6 Observables only

42

$m_{16} = 25 \text{ TeV}$

Observable	Fit	Exp.	Pull	σ
M_Z	91.1876	91.1876	0.0000	0.4535
M_W	80.4507	80.3850	0.1633	0.4025
$1/lpha_{ m em}$	137.7125	0.0073	0.9825	0.6886
$G_{\mu} imes 10^5$	1.1732	1.1664	0.5798	0.0117
$\alpha_3(M_Z)$	0.1188	0.1185	0.4140	0.0008
M_t	174.1882	173.2100	0.7927	1.2340
$m_b(m_b)$	4.1954	4.1800	0.4220	0.0366
$m_{ au}$	1.7781	1.7768	0.1417	0.0089
$M_b - M_c$	3.1568	3.4500	0.9175	0.3196
$m_c(m_c)$	1.2595	1.2750	0.5993	0.0258
$m_s(2 \text{GeV})$	0.0939	0.0950	0.2147	0.0050
$m_d^{-}/m_s^{-}(2{ m GeV})$	0.0701	0.0513	2.8052	0.0067
$1/Q^2$	0.0018	0.0019	0.5139	0.0001
M_{μ}	0.1056	0.1057	0.1818	0.0005
$M_e \times 10^4$	5.1145	5.1100	0.1749	0.0256
$ V_{us} $	0.2244	0.2253	0.6763	0.0014
$ V_{cb} $	0.0404	0.0408	0.1729	0.0021
$ V_{ub} imes 10^3$	3.1033	3.8500	0.8681	0.8601
$ V_{td} imes 10^3$	8.8101	8.4000	0.6817	0.6016
$ V_{ts} $	0.0396	0.0400	0.1531	0.0027
$\sin 2\beta$	0.6270	0.6820	2.8562	0.0193
ϵ_K	0.0022	0.0022	0.2052	0.0002
$\Delta M_{B_s} / \Delta M_{B_d}$	35.3739	35.0345	0.0479	7.0854
$\Delta M_{B_d} \times 10^{13}$	3.9433	3.3370	0.7681	0.7894

44

Observable	Fit	Exp.	Pull	σ
$m_{21}^2 \times 10^5$	7.6562	7.5550	0.1886	0.5364
$m_{31}^2 \times 10^3$	2.4631	2.4620	0.0077	0.1455
$\sin^2 \theta_{12}$	0.3170	0.3070	0.2689	0.0370
$\sin^2\theta_{23}$ θ_{23}	0.6264	0.5125	0.8722	0.1305
$\sin^2 \theta_{13}$ $\theta_{13} \approx 7$	0.0149	0.0218	2.1658	0.0032
M_h	124.5054	125.7000	0.3947	3.0265
$BR(B \rightarrow s\gamma) \times 10^4$	2.6840	3.4300	0.5789	1.2887
$BR(B_s \rightarrow \mu^+ \mu^-) \times 10^9$	3.0247	2.8000	0.2429	0.9252
$BR(B_d \rightarrow \mu^+ \mu^-) \times 10^{10}$	1.1022	3.9000	1.7323	1.6151
$BR(B \to \tau \nu) \times 10^5$	6.1884	11.4000	1.3727	3.7966
$BR(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2} \times 10^8$	4.7640	3.4000	0.2707	5.0381
$BR(B \to K^* \mu^+ \mu^-)_{14.18 \le q^2 \le 16 \text{GeV}^2} \times 10^8$	7.5110	5.6000	0.1336	14.3059
$q_0^2(A_{\rm FB}(B \to K^* \mu^+ \mu^-))^{-1}$	3.6690	4.9000	0.9579	1.2850
$F_L(B \rightarrow K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	0.7225	0.6500	0.2149	0.3374
$F_L(B \to K^* \mu^+ \mu^-)_{14,18 \le q^2 \le 16 \text{GeV}^2}$	0.3108	0.3300	0.0726	0.2644
$P_2(B \to K^* \mu^+ \mu^-)_{1 \le q^2 \le 6 \text{GeV}^2}$	0.0228	0.3300	2.5196	0.1219
$P_2(B \to K^* \mu^+ \mu^-)_{14.18 \le a^2 \le 16 \text{GeV}^2}$	-0.4336	-0.5000	0.3364	0.1974
$P'_{4}(B \to K^* \mu^+ \mu^-)_{1 \le a^2 \le 6 \text{GeV}^2}$	0.5820	0.5800	0.0050	0.4001
$P'_{4}(B \to K^* \mu^+ \mu^-)_{14,18 \le a^2 \le 16 \text{GeV}^2}$	1.2190	-0.1800	1.7066	0.8198
$P'_{5}(B \to K^{*}\mu^{+}\mu^{-})_{1 \le a^{2} \le 6 \text{GeV}^{2}}$	-0.4455	0.2100	2.2578	0.2903
$P'_5(B \to K^* \mu^+ \mu^-)_{14.18 \le q^2 \le 16 \text{GeV}^2}$	-0.7116	-0.7900	0.1552	0.5052
Total χ^2	16. UR		48.8413	

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis - 3 families Fits Predictions - Poh & Raby arXiv: 1505.00264 Fine-tuning Conclusions

Some Benchmark points

m ₁₆	25	25	25	25
α	0	1.5	0	1.5
$\chi^2/d.o.f$	2.158	2.275	2.220	2.505
$m_{\tilde{t}_1}$	4.903	5.011	4.909	5.249
min	6.021	6.120	6.033	6.301
$m_{\tilde{b}_1}$	5.989	6.088	6.455	6.606
$m_{\tilde{b}_2}$	6.454	6.541	6.445	6.267
$m_{\tilde{\tau}_1}$	9.880	9.931	9.912	10.040
$m_{\tilde{t}_2}$	15.369	15.365	15.393	15.516
$M_{\tilde{g}}$	1.202	1.187	1.613	1.690
$m_{\tilde{\chi}_1^0}$	0.203	0.551	0.279	0.900
$m_{\tilde{\chi}_{0}^{0}}$	0.404	0.665	0.538	1.018
$m_{\tilde{\gamma}_1^+}$	0.404	0.665	0.538	1.018
$m_{\tilde{\chi}^+}$	1.128	1.243	1.232	1.537
MA	2.194	2.082	2.477	3.352
sinδ	-0.289	-0.482	-0.520	-0.576
$BR(\mu \to e\gamma) \times$	10 ¹³ 1.108	1.430	1.239	1.340
$edm_e \times 10^{30}(e$	cm) -1.403	-3.305	-1.763	-5.886

[TeV]

48

LHC bounds on the gluino mass using benchmark points with $m_{16} = 20$ TeV and $\alpha = 0$ and 1.5 compared to CMS and ATLAS data

> gluino branching ratios NOT simplified models !!

Anandakrishnan, Bryant & Raby arXiv: 1404.5628

Most stringent signal region

$\sqrt{s} = 8 \text{ TeV}, 20.1 \text{ fb}^{-1}$

ATLAS-CONF-2013-061

final states with large missing transverse momentum, at least four, six, or seven jets, at least three jets tagged as b-jets, and either zero or at least one lepton.

baseline selection: ≥ 1 signal lepton $(e, \mu), p_{\rm T}^{j_1} > 90$ GeV, $E_{\rm T}^{\rm miss} > 150$ GeV,							
≥ 4 jets with $p_{\rm T} > 30~{\rm GeV}, \geq 3$ $b\text{-jets}$ with $p_{\rm T} > 30~{\rm GeV}$							
Signal Region	N jets	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm T}~[{\rm GeV}]$	$m_{\rm eff}^{\rm incl}~[{\rm GeV}]$	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{incl}}} [\mathrm{GeV}^{\frac{1}{2}}]$		
SR-11-6J-B	≥ 6	> 225	> 140	> 800	> 5		

CMS & ATLAS data using CHECKMATE

Outline

SUSY SO(10) minimal model Yukawa unification - first order effects Global χ^2 analysis - 3 families Fits Predictions - Poh & Raby arXiv:15 Fine-tuning Conclusions

Fine-tuning

Fine-Tuning of Benchmark Points with $\alpha = 0$ and $M_{\tilde{g}} \approx 1.2 \text{TeV}$

	m_{16}				
Varying Parameters	10TeV	15TeV	20TeV	25 TeV	30 TeV
μ	140	190	210	360	490
$M_{1/2}$	260	340	400	430	450
m_{16}	12000	27000	47000	74000	110000
m_{H_d}	760	1500	3900	6100	8700
m_{H_u}	10000	23000	40000	62000	89000
A_0	9300	21000	39000	61000	85000
m_{16} with A_0/m_{16} fixed	22000	49000	87000	130000	190000
m_{16} with $m_{H_u,d}/m_{16}$ fixed	9500	22000	40000	62000	86000
m_{16} with $m_{H_{u,d}}/m_{16}, A_0/m_{16}$ fixed	240	400	630	740	850

Fundamental Physics ??

Conclusions

SO(10) Yukawa unification Boundary conditions at MGDT ~ Universal or "Mirage" gaugino masses Light Higgs - SM-like $2.4 \geq m_{_{o}} \geq 1.2 \text{ TeV}$ Three family model fits low energy data !! SUSY at Run II of LHC ! BR($\mu \rightarrow e \gamma$) observable !

NOT "Natural" SUSY

BUT SUSY does not completely decouple

BUT gravitino & moduli sufficiently heavy so NO cosmological problems

"SUSY on the Edge"

painting by Hans Werner Sahm