Triggering and Charge Readout of Liquid Argon TPC from MeV to multi-GeV

Yun-Tse Tsai (SLAC) NNN 15; October 28th, 2015

3456 wires

Large LArTPC

Parameter	best-fit $(\pm 1\sigma)$	3σ	
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV^2}]$	$7.54_{-0.22}^{+0.26}$	6.99 - 8.18 PDG	
$ \Delta m^2 \ [10^{-3} \mathrm{eV}^2]$	$2.43 \pm 0.06 \ (2.38 \pm 0.06)$	$2.23 - 2.41 \ (2.19 - 2.56)$	
$\sin^2 \theta_{12}$	$0.308 {\pm} 0.017$	0.259-0.359	
$\sin^2 \theta_{23}$	$0.437^{+0.033}_{-0.023} \ (0.455^{+0.039}_{-0.031})$	0.374 - 0.628(0.380 - 0.641)	
$\sin^2 \theta_{13}$	$0.0234_{-0.0019}^{+0.0020} \ (0.0240_{-0.0022}^{+0.0019})$	$0.0176 - 0.0295 \ (0.0178 - 0.0298)$	

This talk: MicroBooNE ⇒ DUNE

Requirement				
High resolution	Detailed event topology			
l C3OIGLIOIT	Excellent calorimetry			
Large scale	More statistics for rare interactions			

Neutrino oscillation, cross sections, etc.

Supernova neutrino detection, proton decays, etc.

MicroBooNE

- Ist large LArTPC in the US
- Physics objectives
 - MiniBooNE low energy excess; sterile vs?
 - v-Ar cross sections
 - LArTPC R&D
- v source: Booster neutrino beam
- I TPC: 2.3mx2.5mx10.4m
- LAr: 89 tons (active)
- Charge readout: 8192 wires at 2MHz (0.5µs)

MicroBooNE Readout

Readout Streams

1. Triggered stream

1.6ms = electron drift time for the full detector length (2m) @ 500V/m

2. Continuous stream (commissioning)

~50MB/I.6ms
With Huffman
compression factor ~5
⇒ ~30GB/s

Time

Readout Streams

1. Triggered stream

1.6ms = electron drift time for the full detector length (2m) @ 500V/m

2. Continuous stream (commissioning)

Need further suppression!!

Data Flow

GPS Signal

Data Flow

GPS Signal

TPC Readout Calibration

- Inject pulses with known charges and check
 - linearity w.r.t. the gain settings
 - cross-talk
 - rise-time
- Measure the baseline
- Measure the noise level

DAQ Status

- Started taking beam data at 4:02pm CDT, October 15th 2015
- Beam trigger rate at 5Hz for 8 days
- Readout and DAQ running stably
- Averaged uptime 98% (1st event last event)
 - 7 hours for a run; 3-4 minutes for run transition

	Shift 2015-10-27 00:00 to 08:00	Shift 2015-10-27 08:00 to 16:00	Shift 2015-10-27 16:00 to 00:00
Cumulative Run Length	477 min.	469 min.	437 min.
UpTime Fraction	99.42%	97.83%	98.42%

Triggering

- MicroBooNE triggers
 - External: beam alert, strobe, paddle, and laser
 - Self trigger: PMT (commissioning)
 - SNEWS (SuperNova Early Warning System)
- Using only the beam alert trigger, we will have 500 TB (4PB) of raw (processed) data after 90 days with 2Hz of event rate
 - ⇒ Self triggering is needed!
- Proposed self triggers in future experiments (e.g. DUNE):
 - TPC, SiPM (photon detector), and TPC+SiPM

PMT Trigger

- Fast component of the scintillation light in LAr: 6ns
- Fast readout (compared to TPC): 64MHz
- Criteria on the multiplicity of PMT with light signals, and the sum over the collected light

Example of light collection readout: the light from cosmic rays has significant amplitudes in the waveforms, and, the signified PMTs are localized

Trigger Efficiency Study

- MicroBooNE is measuring self PMT trigger efficiency with data (efficiency w.r.t. reconstructed variable)
 - Prescaled beam alert triggered events
 - use optical reconstructed variables
 - Paddle triggered events (cosmic rays)
 - Events from above containing

Michel electrons:

- explore low energy regime
- capable of using TPC reconstructed variables

Supernova Neutrino Trigger

 MicroBooNE is not sensitive to self triggering on supernova neutrinos owing to its size and background events (surface location)

- SNEWS: sends out xml messages and emails when signals from several detectors coincide
- When received SNEWS, start transferring data files from disk to tape
- Self triggering R&D: Plan to explore PMT triggers for non-beam physics: SN vs, proton decays, etc.

Continuous Stream

1. Triggered stream

1.6ms = electron drift time for the full detector length (2m) @ 500V/m

2. Continuous stream (commissioning)

Need further suppression!!

Data Suppression

- MicroBooNE and 35 ton prototype of DUNE both have ongoing development on zero suppression algorithms
 - MicroBooNE aims to reach a suppression factor of 50-100
- Current MicroBooNE suppression scheme

Zero Suppression

- Current status
 - started studying simulation of supernova neutrinos and minimizing signal loss in suppression algorithms
 - dealing with noise and waveform feature: e.g. average samples to determine whether to pass the threshold
- Suppression scheme for 35ton; able to handle pile-ups

Avenue Towards DUNE

DUNE Far Detector DAQ

- One of the physics goals:
 Supernova neutrino
 measurement
 - self triggering in low energy regime required
- Aim to save non-zerosuppressed data for all interesting regions in interesting events
 - trigger decision made after readout

DUNE reference design (10kt)

Ultimately have 4x10kt LAr

Readout-DAQ Plan

Readout-DAQ Plan

Readout-DAQ Plan

TPC Trigger and RCE

- Plan to have both TPC and SiPM triggers
 - may rely on TPC trigger for low energy objects
- TPC trigger
 - needs data buffering and smart algorithms
- RCE allows
 - sophisticated algorithms
 - currently IGB of RAM;plan on 8-16GB(?)

- Reconfigurable Cluster Element (RCE)
 - powerful FPGA
 - generic hardware used in multiple experiments

Summary

- MicroBooNE DAQ is running stably!
 - triggered stream; taking data at 5Hz
 - 98% of DAQ uptime during neutrino beam uptime
 - currently studying the efficiency of self PMT trigger
 - zero-suppressed continuous stream is under commissioning
- DUNE DAQ is designed to retain all interesting nonzero-suppressed data for non-beam physics
 - 35 ton prototype is testing the design with RCEs and will take data in next few months
- Stay tuned!

DUNE Far Detector DAQ

- One of the primary physics goals:
 Supernova neutrino measurement
- Plan to have DAQ in each cavern loosely-coupled to the others
 - minimize the chances that SB bursts when all DAQ systems are down
- Likely have single stream
 - smart data suppression is required

xO(30)xR_Tx4 R_T: Ratio of readout window

GPS Time Stamp

Data Amount Estimate

Data Amount Estimate

