Review of Neutrino Beamline R&D for NNN2015

M. Friend

KEK

October 30, 2015

Disclaimer !

• Suggestion from the organizers:

"Spend most of your time on overview of both shorter and longer term R&D that are relevant for our quest for CPV"

(That's difficult to know... Is it a political question...?!?)

- But anyway, I will concentrate on high energy, high power conventional beams → superbeams
- Please forgive me if I've left out your favorite beamline/project !

Outline

- J-PARC, FNAL (NuMI, LBNF)
- Conventional Superbeams ν beamline R&D
 - Accelerator high power, high energy proton beam
 - Proton beam monitoring
 - Target
 - Horns
 - Decay volume, beam dump
 - Secondary beam monitoring

J-PARC Overview

- Composed of 400 MeV Linac, 3 GeV RCS, 30 GeV MR
- Design beam power: 750 kW (Currently \sim 360 kW)

J-PARC Overview

- Composed of 400 MeV Linac, 3 GeV RCS, 30 GeV MR
- Design beam power: 750 kW (Currently ${\sim}360$ kW)

Fermilab Overview

Fermilab Accelerator Complex

LBNF Beamline Concept (for 2025?): Beam-on-a-Hill

How to Increase the Beam Power ..?

- Two equivalent ways to increase the proton beam power:
 Increase the number of protons per bunch/spill
 Increase the frequency, number of beam spills
- #1 is difficult beam size blows up due to space charge effect
- J-PARC MR is now undergoing upgrade work to increase the beam spill rate from 2.25 s to ${\sim}1.3$ s
 - In 2017-2018
- NuMI beam employs "slip-stacking" 2 beam bunches in the same physical location with different momenta
 - 6 + 6 achieved in 2015, still improving..
 - 15 Hz spill rate
 - PIP-II, PIP-III
- Anyway, in order to increase the beam power, it's essential to:
 - Reduce beam instabilities
 - Reduce beam loss
- Of course, after increasing the beam power, all parts of the neutrino beamline must be able to handle the increased power !

J-PARC MR Power Supply Upgrade

- J-PARC must upgrade MR power supplies for 1 Hz operation
 - Power supplies to be replaced in 2017-2018
- High gradient RF system also under development

J-PARC New Beam Tune, etc

- J-PARC linac energy increased (181 MeV \rightarrow 400 MeV) in 2013
 - \rightarrow Decrease of space-charge effects at injection to RCS
- Following this upgrade, and other improvements such as:
 - Newly developed intra-bunch feedback system reducing beam instabilities
 - Tuning of MR injection kicker
- Also have found and are testing a new MR beam tune which should allow an increase in intensity

Results of 2 Bunch High-Power Beam Test at New Tune in 2015:

Bunch number	repetition period (sec)	Beam power (kW)	Beam loss (kW)	Notes
2	2.48	132	0.42	measurement
8	2.48	530	1.7	estimation
8	1.3	1000	3.2	estimation

 $\label{eq:MR} \begin{array}{l} \mbox{MR can achieve } > 1 \mbox{ MW with this beam tune w} / \ 1 \mbox{ Hz operation !} \\ \mbox{(Although beam loss needs to be further reduced)} \end{array}$

LBNF Proton Improvement Plan: PIP-II, PIP-III

• Mid-term PIP-II:

- Replace the existing 400 MeV linac with a new 800 MeV superconducting linac
- Shorten Main Injector cycle
 time
 - 1.03 MW at 60 GeV
 - 1.07 MW at 80 GeV
 - 1.20 MW at 120 GeV
- Ready by 2025
- Long-term PIP-III:
 - Replace booster with Rapid Cycling Synchrotron (RCS) or super-conducting linac
 - \geq 2.0 MW at 60 GeV
 - \geq 2.3 MW at 120 GeV

$\begin{array}{c} \mbox{Preparation of J-PARC } \nu \mbox{ Primary} \\ \mbox{Beamline for High Power} \end{array}$

Primary beamline

Primary beamline consists of:

- 21 normal conducting magnets
- 28 super conducting magnets

- Could need to make some magnet configuration change?
- Proton beam monitors
 - Beam current, position, loss monitors are designed to go to high power (750kW +)
 - Could be some issue with beam loss/radiation/monitor degradation for destructive beam profile monitoring
 - Now working on R&D for new beam profile monitors
 - Readout (flashADC) for some monitors must be upgraded to read-out at 1Hz rate
 - Now developing 1Hz-readout SiTCP FADC

NuMI/LBNF Beam Profile Monitor Upgrade R&D Beam profile monitoring is essential for protecting beamline equipment and understanding the proton beam properties

- Towards higher beam power, need:
 - Monitors that are more robust
 - Cause less beam loss
- Secondary Emission Monitor (SEM) use secondary emission from wires in the proton beam to measure the profile
- As beam power is increased, must decrease wire size (beam loss), increase wire robustness
- Three wire materials now in use:
 - Pure Ti (grade 1) 25 μ m wires
 - Ti alloy (grade 5) 20 μ m wires
 - Carbon (lower density than Ti) 33 μm wires
- Want to decrease wire size as much as possible
 - 5 μ m C may be best at 2 MW; fabrication challenging

FNAL 1mm pitch Ti wire c-frame SEM:

J-PARC Profile Monitor Upgrade R&D

- Towards higher beam power, need:
 - Monitors that are more robust
 - Cause less beam loss
- Segmented Secondary Emission Monitor (SSEM) used to monitor beam profile during beam-tuning (destructive monitor)
 - 3 5-µm-thick Ti foils
 - Each monitor causes 0.005% beam loss
- FNAL-style SSEMs are more robust/have less material in the beamline
 - Use thin fibers or wires (rather than foils) less material in the beam \rightarrow less beam loss
 - C-shape frame: monitor can be moved into and out of the beam automatically
 - Now fabricating FNAL-style Ti wire SEM with new design for J-PARC NU beamline
 - Will finish fabrication this year
 - Install and test new monitor in 2016

J-PARC Ti foil SSEM:

New Monitor Frame Design:

Non-Destructive Profile Monitor R&D

Beam Induced Fluorescence (BIF) monitor:

- Detect fluorescence induced by proton beam interactions with gas in the beamline
- Need enough gas for visible signal
 - Must inject gas at J-PARC
- Under development in J-PARC
 ν beamline now

Ionization Profile Monitor (IPM):

- Electrons/ions produced by proton beam interactions with gas drift to multi-channel plate
- Larger signal than BIF
 - Can often use residual gas
- lons/electrons move in the beam field – distorts signal
 - Need a magnet
- Under development/in use at FNAL and J-PARC accelerator

High Power J-PARC Secondary Beamline

J-PARC secondary beamline infrastructure (shielding, decay volume, hadron absorber) were all designed for 3–4 MW

Conponent	Limiting factor	Acceptable value
The second state	Thermal shock	3.3×10 ¹⁴ ppp
Target	Cooling capacity	0.75 MW
	Conductor cooling	2 MW
Hann	Stripline cooling	0.54 MW
Horn	Hydrogen production	1 MW
	Operation	2.48 sec. & 250 kA
II. X/	Thermal stress	4 MW
He vessel	Cooling capacity	0.75 MW
David	Thermal stress	4 MW
Decay volume	Cooling capacity	0.75 MW
D D	Thermal stress	3 MW
Beam Dump	Cooling capacity	0.75 MW
Dediction	Radioactive air disposal	1 MW
Kadiation	Radioactive water	0.5 MW

J-PARC Secondary Beamline Upgrades

However, need upgrades to improve cooling capacity, radiation containment, and irradiated cooling water disposal for 1+ MW

Conponent	Limiting factor	Acceptable value
The second state	Thermal shock	3.3×10 ¹⁴ ppp
Target	Cooling capacity	>1.5 MW
	Conductor cooling	2 MW
TT .	Stripline cooling	>1.25 MW
Horn	Hydrogen production	>1 MW
	Operation	1 sec. & 320 kA
TT T 7 1	Thermal stress	4 MW
He Vessel	Cooling capacity	>1.5 MW
D	Thermal stress	4 MW
Decay volume	Cooling capacity	>1.5 MW
D D	Thermal stress	3 MW
Beam Dump	Cooling capacity	>1.5 MW
Delletter	Radioactive air disposal	>1 MW
Kadiation	Radioactive water	0.75→1.3 or 2 MW

J-PARC Target R&D

- J-PARC target is He-cooled solid 91-cm-long graphite rod
- Ready for 750 kW beam
- Target material itself can withstand 1.3 MW beam
- Need to increase target cooling capacity to go to 2 MW
 - Reinforce the He cooling capacity
 - He pressure must be increased

 \rightarrow Hardware modifications can be done within 1 year (design may take longer)

- Target water cooling changed from 2 sides for LE target to 1 for ME NO ν A target, allowing for pions to exit from 3 sides of the target
- Target moved from inside horn to upstream of horn
- Similar nominal target design for LBNF (much R&D ongoing):

• Pressurized helium cooled beryllium/graphite spherical array idea:

• LBNF target cross-section increased for increased spot-size

Horn Overview

- Electromagnetic focusing horn consists of inner and outer conductor
 - Large magnetic field between conductors achieved by operating at high current (generally 100–300 kA)
- Pions of the correct sign traveling between two conductors are focused
 - Sign of focused pions can be chosen based on horn polarity setting
- Generally cooled by spray water
 - Beam power limits on horn cooling, horn stripline cooling, and activation/disposal of horn cooling water must be considered
- J-PARC 3 horn configuration; NuMI 2 horn configuration

J-PARC Horn Power Supply Upgrade for

- Move from 2 to 3 power supplies $\pm 250
 ightarrow \pm 320$ kA
 - New power supplies with energy recovery system
 - New striplines with low R & L
 - New transformers optimized for 320 kA operation
 - 10% increase in neutrino flux at far detector
 - $5{\sim}10\%$ reduction of wrong-sign neutrinos around peak energy
- Upgrade planned in 2016-2017
- Can the flux be further improved by

NuMI Horn Upgrade Upgraded Design

Original Design

- Stripline shape changed new design can accept 700 kW beam (from 400 kW original design)
- Crosshair used for horn alignment during installation changed from Aluminum to Beryllium
- LBNF baseline design is similar, although horn power supply upgrade required for reduced pulse width
- See next talk (L. Fields) for LBNF horn optimization study details 22/29

Original Design

- Stripline shape changed new design can accept 700 kW beam (from 400 kW original design)
- Crosshair used for horn alignment during installation changed from Aluminum to Beryllium
- LBNF baseline design is similar, although horn power supply upgrade required for reduced pulse width
- See next talk (L. Fields) for LBNF horn optimization study details 23/29

- Stripline shape changed new design can accept 700 kW beam (from 400 kW original design)
- Crosshair used for horn alignment during installation changed from Aluminum to Beryllium
- LBNF baseline design is similar, although horn power supply upgrade required for reduced pulse width
- See next talk (L. Fields) for LBNF horn optimization study details 24/29

J-PARC/LBNF Decay Volume, Beam Dump J-PARC decay volume and beam dump:

- Designed for 3 MW
- Decay pipe: water-cooled iron walls
 - Increase water flow-rate for >1 MW
 - Helium filled to prevent activation of air
- Beam dump: Graphite core
 L BNE Decay Volume

LBNF current design:

- Designed for 2.4 MW
- Target chase: air filled, air/water cooled
- Decay pipe: helium filled/air cooled
- Beam dump: water cooled aluminum core, forced air cooled shielding

J-PARC/NuMI Secondary Beam Monitors

- J-PARC muon monitors 2 redundant measurements
 - Ionization chamber (IC) designed based on NuMI muon monitors
 - Silicon photodiode sensors (Si)
- Some upgrade ideas:
 - IC now uses Ar gas may saturate at higher beam power
 - Considering He or Ne gas
 - Si sensors degrade over time
 - Now testing diamond and SiC sensors

NuMI hadron and muon monitors (IC with He gas):

LBNF Secondary Beam Monitors

- LBNF hadron monitor design:
 - Idea is to use IC with low pressure Ar
 - Improvement on NuMI (atmospheric pressure He) design which showed:
 - Saturation at high beam power
 - Variability with He temperature, pressure, impurity
- Two new complementary muon monitoring systems being developed:
 - Gas Cherenkov
 - Stopped muon monitor calorimeter type detectors

Stopped Muon Monitor Prototype

Gas Cherenkov Muon Monitor Design

Muon Beam from NuMI decay tunnel

2 Very Long-Term Ideas to Increase the New 8 GeV Booster Ring J-PARC Beam Power

- New 8 GeV booster ring for injection into the J-PARC MR
- Fixes J-PARC beam size blow up (due to space-charge effect) at injection to MR (current power increase bottleneck)
- MR \rightarrow >3.2 MW possible

- - 4 I INACs to 9 GeV in the current KEKB tunnel
 - 9 MW beam possible !
 - If v experiment can find a way to handle CW beam
 - Not at J-PARC; at KEK site

Conclusion

- We are well on the way to having the world's first multi-MW proton accelerators \rightarrow neutrino superbeams !
- But, still much R&D work to get us there in the coming years

- Some references:
 - Talks at HINT2015 M. Bishai, C. Densham, T. Koseki, T. Sekiguchi, B. Zwaska
 - Talks at NBI2014 P. Derwent, K. Gollwitzer, T. Hiraki, Z. Liptak, G. Mills, P. Schlabach, G. Tassotto...
 - Talk at Neutrino2014 A. Ichikawa
 - LBNF/DUNE Technical Design Report