Optimization of the Detector Design of NuPRISM, a New Water Cherenkov Neutrino Near Detector **Tomoyo Yoshida, Tokyo Institute of Technology**

J-PARC neutrino off-axis beam

• The J-PARC neutrino beam is directed 2.5° away from the far detector. (Off-Axis beam)

NuPRISM Detector

• A proposed water Cherenkov detector in the J-PARC neutrino beam at 1~2 km baseline.

10 m

Motivation for NuPRISM

- Neutrino-nucleus cross sections are not well measured, which ulletcauses systematic uncertainties in long-baseline experiments.
- In the J-PARC neutrino beamline, near detectors measure flux and cross sections before oscillation.
- However, the uncertainties remain since neutrino spectra differ between far and near detectors.
- NuPRISM measures neutrino interactions over off-axis angle $1 \sim 4^{\circ}$.
- Taking linear combination of them, oscillated neutrino spectra are regenerated,[#] resulting in cancellation of systematic uncertainties.

Optimization of NuPRISM detector

- For short baseline oscillation search and v_{e} cross section measurement, we need to find a photo-sensor configuration that allows us to select pure v_{e} samples.
- As a first step, event reconstruction performances between some configurations with different photo coverages are compared using detector simulation.

Simulation Configuration

Results

1. Particle identification

Water Cherenkov detectors distinguish electrons and muons with the shape of their Cherenkov rings.

- Based on Geant4 (WCSim)
- PMTs with 8 inch diameter
- Position of particles : uniform : isotropic Direction

Particle	Momentum [MeV/c]
e⁻	30, 100, 500, 1000
μ ⁻	200, 500, 800, 1000

• Only events whose track is fully contained in the detector are used for analyses.

Event reconstruction algorithm, fiTQun

- Developed for T2K experiment
- Tuning for NuPRISM is ongoing.
- Reconstructs particles from charge and time information by all photo sensors with the maximum likelihood method. unhit hit

2. Momentum resolution

With Gaussian fit of reconstructed momentum distribution

3. Position and direction resolution

Based on the distributions of position/direction difference between true and reconstructed particles. The resolutions are defined as 68.3% coverage value.

$L(\boldsymbol{x}) = \prod_{i=1}^{n} |P_{i}(\text{unhit}|\boldsymbol{x})| = \{1 - P_{i}(\text{unhit}|\boldsymbol{x})\} f_{q}(q_{i}|\boldsymbol{x}) f_{t}(t_{i}|\boldsymbol{x})$

Probability that the j-th photo Charge probability Time probability sensor does not detect photon distribution distribution

Summary

- A new water Cherenkov detector, NuPRISM, is proposed in the J-PARC neutrino beamline. NuPRISM is expected to reduce systematic uncertainty of T2K and future T2HK experiments.
- In the near future, sensitivities to physics measurements will ulletbe evaluated, and the detector design will be determined.

