NNN15/UD2

Realistic F-theory Compactifications

Mirjam Cvetič

Outline:

I. Motivation: F-theory \& Particle Physics
II. Key Ingredients of F-theory Compactification (non-Abelian gauge symmetry, matter, Yukawas)
III. Particle Physics Model Building (highlight concrete example of MSSM)
IV. Further Developments: Abelian \& Discrete Symmetries in F-theory

Emphasize geometric perspective
Apologies: Upenn-centric

F-theory?

F-theory?

M-theory (11dim SG)

F-theory

- Coupling g_{s} part of geometry (12dim)

$$
=\quad \text { Type IIB }
$$

- back-reacted D7-branes
- regions with large g_{s} on non-CY space

F-theory?

F-theory \& Particle Physics MOTIVATION

F-Theory Motivation

A broad domain of non-perturbative string theory landscape with new promising particle physics \& cosmolegy
(will not address moduli stabilization, though promising)

- SU(5) GUT couplings that are absent in perturbative string theory w/ D-branes, e.g., 10105
- appearance of exceptional gauge symmetries $\left(\mathrm{E}_{6}\right)$
[Donagi,Wijnholt'08]
[Beasley,Heckman,Vafa'08]....

Conceptual: geometric description at large string coupling

- Determine discrete data:
gauge symmetry, matter reps. \& multiplicities, Yukawa couplings

Type IIB perspective

F-THEORY BASIC INGREDIENTS

F-theory: basic ingredients

- F-theory is a geometric formulation of string theory w/D-branes, where one adds a geometric object: torus w/ SL(2,Z) symmetry

- τ - torus complex structure: $\tau \equiv C_{0}+i g_{s}^{-1}$ - string coupling (axion-dilaton)
- Torus - fibered over a compactified (base) space B
i.e. torus coordinates depend on the base B

Torus= elliptic curve
Weierstrass form:
$y^{2}=x^{3}+f x z^{4}+g z^{6}$
f, g - function fields on B

[z:x:y] coords on $\mathbf{P}^{\mathbf{2}}(1,2,3)$

F-theory: basic ingredients

- F-theory is a geometric formulation of string theory w/D-branes, where one adds a geometric object: torus $\quad \mathrm{w} / \mathrm{SL}(2, Z)$ symmetry

- τ - torus complex structure: $\tau \equiv C_{0}+i g_{s}^{-1}$ - string coupling (axion-dilaton)
- Torus - fibered over a compactified (base) space B
i.e. torus coordinates depend on the base \mathbf{B}

At brane location in B torus degenerates $w / g_{s} \rightarrow \infty$ singular: String Theory in non-perturbative regime

F-theory: basic ingredients

- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X $\mathrm{D}=4, \mathrm{~N}=1$ vacua: fourfold $\mathrm{X}_{4} \quad$ [all dimensions complex]
- Singularities encode complicated set-up of intersecting D-branes:

F-theory: basic ingredients

- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X $D=4, N=1$ vacua: fourfold X_{4}
- Singularities encode complicated set-up of intersecting D-branes:

Non-Abelian gauge
symmetry in codimension-
one singul. in B (divisors
wrapped by branes)

F-theory: basic ingredients

- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X $D=4, N=1$ vacua: fourfold X_{4}
- Singularities encode complicated set-up of intersecting D-branes:

Non-Abelian gauge
symmetry in codimension-
one singul. in B (divisors
wrapped by branes)

F-theory: basic ingredients

- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X $D=4, N=1$ vacua: fourfold X_{4}
- Singularities encode complicated set-up of intersecting D-branes:

Non-Abelian gauge
symmetry in codimension-
one singul. in B (divisors
wrapped by branes)

Yukawa couplings in codimension-three singul. in B $p t=S \cap S^{\prime} \cap S^{\prime \prime}$

Highlights: Non-Abelian Gauge Symmetry

[Kodaira; Tate; Vafa; Morrison,Vafa;...]

1. Weierstrass form for elliptic fibration of X

$$
y^{2}=x^{3}+f x z^{4}+g z^{6}
$$

2. Severity of singularity along divisor S in B :

$\left[\operatorname{ord}_{s}(f), \operatorname{ord}_{s}(g), \operatorname{ord}_{s}(\Delta)\right] \leftrightarrow \rightarrow$ Singularity type of fibration of X
3. Resolution: singularity type $\leftrightarrow \rightarrow$ structure of a tree of \mathbb{P}^{1} 's over S

$$
I_{n} \text {-singularity } \leftrightarrow \rightarrow \text { SU(n) Dynkin diagram }
$$

Deformation: [Grassi, Halverson, Shaneson]

- Cartan generators for A' gauge bosons: in M-theory via Kaluza-Klein (KK) reduction of C_{3} potential along (1,1)-forms $\omega_{i} \leftrightarrow \mathbb{P}_{i}^{1}$ on X

$$
C_{3} \supset A^{i} \omega_{i}
$$

- Non-Abelian generators: light M2-brane excitations on $\mathbb{P}^{1 ‘}$ [Witten]

Highlights: Matter

Singularity at codimension-two in B :

Highlights: Matter

Singularity at codimension-two in B :

w/isolated (M2-matter) curve wrapping $\mathbb{P}^{1} \rightarrow$ charged matter (determine via intersection theory)

Initial focus: F-theory with SU(5) Grand Unification

[Donagi,Wijnholt'08][Beasley,Heckman,Vafa’O8]...
Model Constructions:
[Donagi,Wijnholt'09-10]...[Marsano,Schäfer-Nameki,Saulina'09-11]... Review: [Heckman]
[Blumehagen,Grimm,Jurke,Weigand'O9][M.C., Garcia-Etxebarria,Halverson'10]... [Marsano,Schäfer-Nameki'll-12]...[Clemens,Marsano,Pantev,Raby,Tseng '12]...
a bit more later
c.f., Hebecker's talk

Recent progress on other Particle Physics Models:
Standard Model building blocks (via tops of dP_{2}) [Lin,Weigand'14]
First Global 3-family Standard, Pati-Salam, Trinification Models [M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]

highlights

I. Particle Physics \& F-theory

concrete examples

Construction of Torus Fibrations

i. Torus = elliptic curvC Examples of constructions via toric techniques:
$\mathcal{C}_{F_{i}}$ as a Calabi-Yau hypersurface in the two-dimensional toric variety $\mathbb{P}_{F_{i}}$ (generalized projective spaces, associated with 16 reflexive polytops F_{i}):
[Klevers, Peña, Piragua, Oehlmann, Reuter'14]

$$
\mathcal{C}_{F_{i}}=\left\{p_{F_{i}}=0\right\} \text { in } \mathbb{P}_{F_{i}}
$$

ii. Elliptically fibered Calabi-Yau space: $X_{F_{i}}$

Impose Calabi-Yau condition: coordinates in $\mathbb{P}_{F_{i}}$ and coeffs. of $\mathcal{C}_{F_{i}}$ lifted to sections on (specitic functions of) B

$$
\mathcal{C}_{F_{i}} \subset \mathbb{P}_{F_{i}} \longrightarrow X_{F_{i}}
$$

Model Building Strategy:

i. Construction of $X_{\text {Fi }}$ w/ Particle Physics gauge symmetry (codim-1), matter reps. (codim-2) \& Yukawas (codim-3)

$$
\mathrm{F}_{11} \text { - Standard Model } \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \quad \text { focus }
$$

Representation	$(\mathbf{3}, \mathbf{2})_{1 / 6}$	$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	$(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$	$(\mathbf{1}, \mathbf{2})_{-1 / 2}$	$(\mathbf{1}, \mathbf{1})_{-1}$

$p_{F_{11}}=s_{1} e_{1}^{2} e_{2}^{2} e_{3} e_{4}^{4} u^{3}+s_{2} e_{1} e_{2}^{2} e_{3}^{2} e_{4}^{2} u^{2} v+s_{3} e_{2}^{2} e_{3}^{2} u v^{2}+s_{5} e_{1}^{2} e_{2} e_{4}^{3} u^{2} w+s_{6} e_{1} e_{2} e_{3} e_{4} u v w+s_{9} e_{1} v w^{2}$
[hypersurface constraint in dP_{4} ($\mathbb{P}^{2}[u: v: w]$ with four blow-ups $\left[\mathrm{e}_{1}: \mathrm{e}_{2}: \mathrm{e}_{3}: \mathrm{e}_{4}\right]$)
F_{13} - Pati-Salam Model
F_{16} - Trinification Model
ii. Chiral index for $\mathrm{D}=4$ matter:

$$
\chi(\mathbf{R})=\int_{\mathcal{C}_{\mathbf{R}}} G_{4}
$$

a) construct G_{4} flux by computing $H_{V}^{(2,2)}(\hat{X})$
b) determine matter surface $\mathcal{C}_{\mathbf{R}}$ (via resultant techniques)
iii. Global consistency - D3 tadpole cancellation:

$$
\frac{\chi(X)}{24}=n_{\mathrm{D} 3}+\frac{1}{2} \int_{X} G_{4} \wedge G_{4}
$$

a) satisfied for integer and positive $n_{D 3}$
b) check, all anomalies are cancelled

Standard Model:

$$
\text { Base } \mathrm{B}=\mathbb{P}^{3} \text { Divisors in the base: } \begin{aligned}
& \mathcal{S}_{7}=n_{7} H_{\mathbb{P}^{3}} \\
& \mathcal{S}_{9}=n_{9} H_{\mathbb{P}^{3}}
\end{aligned}
$$

Solutions (\#(families); $\mathrm{n}_{\mathrm{D} 3}$) for allowed ($\mathrm{n}_{7}, \mathrm{n}_{9}$):

$n_{7} \backslash^{\prime}$	1	2	3	4	5	6	7
7	-	$(27 ; 16)$	-	-			
6	-	$(12 ; 81)$	$(21 ; 42)$	-	-		
5	-	-	$(12 ; 57)$	$(30 ; 8)$	-	$(3 ; 46)$	-
4	$(42 ; 4)$	-	$(30 ; 32)$	-	-	-	-
3	-	$(21 ; 72)$	-	-	-	$(15 ; 30)$	
2	$(45 ; 16)$	$(24 ; 79)$	$(21 ; 66)$	$(24 ; 44)$	$(3 ; 64)$		
1	-	-	-	-			
0	-	-	$(12 ; 112)$				
-1	$(36 ; 91)$	$(33 ; 74)$					
-2	-						

Pati-Salam Model

Solutions (\#(families); $\mathrm{n}_{\mathrm{D} 3}$) for allowed ($\mathrm{n}_{7}, \mathrm{n}_{9}$):

$\left.n_{7}\right\rangle^{n_{9}}$	1	2	3	4	5	6	7
10	$(13 ; 204)$						
9	-	$(11 ; 140)$					
8	$(33 ; 94)$	$(10 ; 119)$	$(9 ; 90)$				
7	-	$(9 ; 100)$	$(6 ; 77)$	$(14 ; 48)$			
6	$(15 ; 108)$	$(8 ; 86)$	$(21 ; 52)$	$(12 ; 46)$	$(5 ; 44)$		
5	$(6 ; 106)$	$(35 ; 44)$	-	$(30 ; 16)$	-	$(3 ; 44)$	
4	$(7 ; 102)$	$(6 ; 75)$	$(15 ; 50)$	$(8 ; 42)$	$(15 ; 30)$	$(6 ; 41)$	$(7 ; 42)$
3	$(6 ; 106)$	$(35 ; 44)$	-	$(30 ; 16)$	-	$(3 ; 44)$	
2	$(15 ; 108)$	$(8 ; 86)$	$(21 ; 52)$	$(12 ; 46)$	$(5 ; 44)$		
1	-	$(9 ; 100)$	$(6 ; 77)$	$(14 ; 48)$			
0	$(33 ; 94)$	$(10 ; 119)$	$(9 ; 90)$				
-1	-	$(11 ; 140)$					
-2	$(13 ; 204)$						

Trinification Model

Solutions (\#(families); $\mathrm{n}_{\mathrm{D} 3}$) for allowed ($\mathrm{n}_{7}, \mathrm{n}_{9}$):

$n_{7} \eta^{n_{9}}$	1	2	3	4	5	6	7	8	9	10
10	$(5 ; 120)$									
9	$(3 ; 94)$	$(3 ; 94)$								
8	$(4 ; 72)$	$(8 ; 69)$	$(4 ; 72)$							
7	$(14 ; 48)$	$(7 ; 54)$	$(7 ; 54)$	$(14 ; 48)$						
6	$(5 ; 50)$	$(8 ; 44)$	$(3 ; 44)$	$(8 ; 44)$	$(5 ; 50)$					
5	$(5 ; 50)$	$(5 ; 42)$	$(10 ; 36)$	$(10 ; 36)$	$(5 ; 42)$	$(5 ; 50)$				
4	$(14 ; 48)$	$(8 ; 44)$	$(10 ; 36)$	$(16 ; 30)$	$(10 ; 36)$	$(8 ; 44)$	$(14 ; 48)$			
3	$(4 ; 72)$	$(7 ; 54)$	$(3 ; 44)$	$(10 ; 36)$	$(10 ; 36)$	$(3 ; 44)$	$(7 ; 54)$	$(4 ; 72)$		
2	$(3 ; 94)$	$(8 ; 69)$	$(7 ; 54)$	$(8 ; 44)$	$(5 ; 42)$	$(8 ; 44)$	$(7 ; 54)$	$(8 ; 69)$	$(3 ; 94)$	
1	$(5 ; 120)$	$(3 ; 94)$	$(4 ; 72)$	$(14 ; 48)$	$(5 ; 50)$	$(5 ; 50)$	$(14 ; 48)$	$(4 ; 72)$	$(3 ; 94)$	$(5 ; 120)$

Yukawa Couplings (codimension-3 singularities)

Generically there for all gauge invariant couplings (for MSSM example $\rightarrow \mu$-problem; R-parity violating terms)

Magnitudes?
Technology not developed, yet

- possibly tuned by adjusting complex structure moduli
- construction of MSSM w/ discrete symmetry
[work in progress, M.C., Klevers,Reuters]

Techniques in local models [Marchesano et al.] Non-perturbative (D3-instanton) effects
[Martucci,Weigand]

Detailed Phenomenology \rightarrow Long shot

II. U(1)-Symmetries in F-Theory

Abelian Symmetries in F-theory

Physics: important ingredient of the Standard Model and beyond

\square Multiple $\mathrm{U}(1)$'s desirable (F-theory applications [Antoniadis,Leontaris,King,..])
Formal developments: new CY elliptic fibrations with rational sections

While non-Abelian symmetries extensively studied ('96...)
[Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...]

Abelian sector rather unexplored

A lot of recent progress '12-'15: [Grimm,Weigand;... Morrison,Park; M.C.,Grimm,Klevers;... Borchmann,Mayrhofer,Palti,Weigand; M.C.,Klevers,Piragua; MC,Grassi,Klevers,Piragua;...
Braun,Grimm,Keitel; ... M.C.,Klevers,Piragua,Song;...Morrison,Taylor;...
M.C.,Klevers,Piragua,Taylor]

U(1)'s-Abelian Symmetry

$\mathrm{U}(1)$ gauge bosons A^{m} should also arise via KK-reduction $C_{3} \supset A^{m} \omega_{m}$
(1,1)-forms on X

U(1)'s-Abelian Symmetry \& Rational Torus Points

$\mathrm{U}(1)$ gauge bosons A^{m} should also arise via KK-reduction $C_{3} \supset A^{m} \omega_{m}$
$(1,1)$ - forms $\omega_{m} \longleftrightarrow$ rational points
(1,1)-forms on X [Morrison,Vafa]

Torus=elliptic curve has a marked "zero" point P. For a special shape there can be additional marked "rational" points Q.
Rational points form a group under addition on torus.

Mordell-Weil group of rational points

U(1)'s-Abelian Symmetry \&Mordell-Weil Group

Point Q induces a rational section $\hat{s}_{Q}: B \rightarrow X$ of torus fibration

$\Rightarrow \hat{s}_{Q}$ gives rise to a second copy of B in X :
new divisor B_{Q} in X

U(1)'s-Abelian Symmetry \&Mordell-Weil Group

Point Q induces a rational section $\hat{s}_{Q}: B \rightarrow X$ of torus fibration

\hat{s}_{Q} gives rise to a second copy of B in X :
new divisor B_{Q} in X
(1,1)-form ω_{m} constructed from divisor B_{Q} (Shioda map) indeed $(1,1)$ - form $\omega_{m} \Longleftrightarrow$ rational section

Explicit Examples with n-rational sections - U(1) ${ }^{\mathrm{n}}$

Torus=elliptic curve

$n=0: \quad$ with P - generic $C Y$ in $\mathbb{P}^{2}(1,2,3) \quad$ (Tate form)
$n=1$: \quad with P, Q - generic $C Y$ in $\operatorname{Bl}_{1} \mathbb{P}^{2}(1,1,2) \quad$ [Morrison,Park'12]
$n=2$: \quad with P, Q, R - specific example: generic $C Y$ in $d P_{2}$
[Borchmann,Mayerhofer,Palti,Weigand'13;
M.C.,Klevers,Piragua 1303.6970,1307.6425;
M.C.,Grassi,Klevers,Piragua 1306.0236]

- generalization: nongeneric cubic in $\mathbb{P}^{2}[u: v: w]$
[M.C.,Klevers,Piragua,Taylor 1507.05954]
$n=3$: with $P, Q, R, S-C I C Y$ in $\mathrm{Bl}_{3} \mathbb{P}^{3}$ [M.C.,Klevers,Piragua,Song1310.0463] $\underline{n}=4$ determinantal variety in \mathbb{P}^{4}
higher n, not clear...

$\mathrm{U}(1)^{2}$: Concrete Example

[M.C., Klevers,Piragua]
[Borchmann,Mayrhofer,Palti,Weigand]

representation as hypersurface in dP_{2}

$$
p=u\left(s_{1} u^{2} e_{1}^{2} e_{2}^{2}+s_{2} u v e_{1} e_{2}^{2}+s_{3} v^{2} e_{2}^{2}+s_{5} u w e_{1}^{2} e_{2}+s_{6} v w e_{1} e_{2}+s_{8} w^{2} e_{1}^{2}\right)+s_{7} v^{2} w e_{2}+s_{9} v w^{2} e_{1}
$$

$$
\text { [u:v:w:e } \left.e_{1}: \mathrm{e}_{2}\right] \text {-homogeneous coordinates of } \mathrm{dP}_{2}
$$

$u \quad \mathrm{u} \quad \mathbf{w} \quad \mathrm{e}_{1} \mathrm{e}_{2}$	
$P:$	$E_{2} \cap p=\left[-s_{9}: s_{8}: 1: 1: 0\right]$,
$Q:$	$E_{1} \cap p=\left[-s_{7}: 1: s_{3}: 0: 1\right]$,
$R:$	$D_{u} \cap p=\left[0: 1: 1:-s_{7}: s_{9}\right]$.

Sections represented by intersections of different divisors in dP_{2} with p

$\mathrm{U}(1)^{2}$: Further Developments

General $\mathrm{U}(1)^{2}$ construction: [M.C., Klevers, Piragua, Taylor 150\%.05954]

$$
\begin{aligned}
& u f_{2}(u, v, w)+\prod_{i=1}^{3}\left(a_{i} v+b_{i} w\right)=0 \\
& f_{2}(u, v, w) \text { degree two polynomial in } \mathbb{P}^{2}[u: v: w]
\end{aligned}
$$

Study of non-Abelian enhancement (unHiggsing) to $\operatorname{SU}(3) x S U(2)^{2}$ by merging rational points $P, Q, R \rightarrow$ generalizations

Study of $\operatorname{SU}(5) \mathrm{w} / \mathrm{U}(1)$'s
[...M.C.,Grassi,Klevers,Piragua'13...]
via tops [Borchman,Mayrhofer,Weigand'13;Braun,Grimm,Keitel'13;...]
Systematic analysis
[Kuntzler,Schäfer-Nameki;Sacco,Lawrie; Lawrrie,Schäfer-Nameki,Wong’14] Study of $S U(5) x U(1) x U(1)$ for Frogatt-Nielson flavor textures [Krippendorf, Schäfer-Nameki,Wong 1507.0596]

III. Discrete Symmetries in F-Theory

Why Discrete Symmetries in F-theory?

Physics: important ingredient of beyond the Standard Model physics
\Rightarrow forbid terms for fast proton decay and other R-parity violating terms, e.g., R-parity $\left(Z_{2}\right)$, baryon triality $\left(Z_{3}\right)$ and proton hexality $\left(Z_{6}\right)$; family textures (F-theory implications [Leontaris,King,...])

Geometry: new Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section

Earlier work:[Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;...]
Recent extensive efforts'14-'15: [Braun, Morrison; Morrison, Taylor;
Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria, Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; M.C.,Donagi,Klevers,Piragua,Poretschkin; Grimm, Pugh, Regalado]

Abelian \& Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $\left.U(1)^{(n-1)}\right)$
[Morrison, Taylor;
Anderson, García-Etxebarria, Grimm, Keitel;
Braun, Grimm, Keitel]
connected via conifold transition
F-theory compactification with an n-section (discrete Z_{n} symmetry)

Abelian \& Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)
$\mathrm{n}=2$ example
Independent Sections

F-theory compactification with \mid an n-section (discrete Z_{n} symmetry)

Torus fibration degenerates at co-dimension two loci \rightarrow matter

Abelian \& Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)
$\mathrm{n}=2$ example
Independent Sections

F-theory compactification with an n-section (discrete Z_{n} symmetry)

Conifold transition - Geometry

Abelian \& Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $\left.U(1)^{(n-1)}\right)$
$\mathrm{n}=2$ example
Independent Sections

F-theory compactification with an n-section (discrete Z_{n} symmetry)
 massless field acquires VEV
Conifold transition - Effective theory $\mathrm{U}(1) \xrightarrow{<\phi>\neq 0} \mathrm{Z}_{2}$

Abelian \& Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $\left.U(1)^{(n-1)}\right)$

F -theory compactification with an n -section (discrete Z_{n} symmetry)

Since Abelian symmetries better understood (c.f., recent works) most efforts focus on the geometry and spectrum of $U(1)^{(n-1)}$, to deduce, primarily via effective field theory, implications for Z_{n}.
$Z_{2} \quad$ [Anderson,Garcia-Etxebarria, Grimm; Braun,Grimm,Keitel;
Z_{3} [M.C.,Donagi,Klevers,Piragua,Poretschkin] 1502.06953
Geometries with n-section \Leftrightarrow Tate-Shafarevich Group $Z_{\text {No time }}$

Summary and Outlook

- Highlights of F-theory Compactification

Geometric perspective - discrete data:
gauge symmetry; matter reps and multiplicity;Yukawa couplings

- Construction of Particle Physics Models SU(5) GUT's \& first examples of three family Standard, Pati-Salam and Trinification models (tip of the iceberg)
- Conceptual developments:

Abelian \& Discrete Symmetries (related to MW \& TS groups, respectively) highlight $\mathrm{U}(1)^{2}$ \& applications

Issues: continuous data such as coupling magnitudes,... moduli stabilization,...supersymmetry breaking,... Further study

