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Apologies: Upenn-centric 
Emphasize geometric perspective 



F-theory? 

•  back-reacted  
D-branes  

•  regions with large 
gs on non-CY space 

•  Coupling gs part of 
     geometry (12dim) 
•  Torus fibered  

Calabi-Yau manifold 
 
      

F-theory                  =             Type II String 

gs –string coupling 



F-theory? 

F-theory                  =             Type IIB 

M-theory (11dim SG) 

on S1 

•  back-reacted  
D7-branes  

•  regions with large 
gs on non-CY space 

gs –string coupling 

•  Coupling gs part of 
     geometry (12dim) 



F-theory? 

   On T2 

   Limit vol(T2)      0 

S-duality 

F-theory                  =             Type IIB 

M-theory Type II A 

SO(32) Het.  
Type I 

on S1 

Certain 
setups 

Certain 
setups 

•  back-reacted  
D7-branes  

•  regions with large 
gs on non-CY space 

•  Coupling gs part of 
     geometry (12dim) 

E8xE8 Het.  



MOTIVATION!!
F<theory!&!Par+cle!Physics!!



•  SU(5)  GUT couplings that are absent in perturbative string 
theory w/ D-branes, e.g.,10 10 5  

•  appearance of exceptional gauge symmetries (E6 )                                                                                               

At finite coupling   à  broader domain of string theory landscape 
w/ promising particle physics  

F-‐Theory	  Mo+va+on	  

   Conceptual: geometric description at large string coupling 

[Donagi,Wijnholt’08]
[Beasley,Heckman,Vafa’08]….

•  Determine discrete data:  
    gauge symmetry, matter reps. & multiplicities, Yukawa couplings 

A!broad!domain!of!non<perturba+ve!string!theory!landscape!
with!new!promising!par+cle!physics!&!cosmology!!

[Donagi,Wijnholt;Beasley,Heckman,Vafa;… Font,Ibanez;… 
Hayashi,Kawano,Tsuchiya,Watari,Yamazaki;…Dudas,Palti;…
Cecotti,Cheng,Heckman,Vafa;…]

[Blumenhagen,Grimm,Jurke,Weigand;
Marsano,Saulina,SchäferNameki;Grimm,Krause,Weigand;…
M.C.,Halverson,Garcia-Etxebarria;...]
Standard Model [Lin,Weigand] 
3-family Standard, Pati-Salam, Trinification Models 
[M.C., Klevers, Peña, Oehlmann, Reuter]


Recent past, primary focus on [SU(5)] GUT’s (‘08….): 
Local model building: 
 
 
Global model building: 
 

Employing!!geometric!techniques!!for!ellip+cally!fibered!!!!!!!!!
Calabi<Yau!manifolds!!and/or!duali+es!to!determine!

Gauge symmetries, matter repres.& multiplicities, Yukawa couplings,…  

[Vafa; Vafa,Morrison,…]

F<theory!and!Par+cle!Physics!

(will not address moduli stabilization, though promising) 

. 

. 



F<THEORY!!BASIC!INGREDIENTS!
Type!IIB!perspec+ve!



•  F-‐theory	  is	  a	  geometric	  formula+on	  of	  string	  theory	  w/D-‐branes,	  where	  
one	  adds	  a	  geometric	  object:	  torus	  	  	  	  	  	  	  	  	  	  w/	  SL(2,Z)	  symmetry	  

	  
	  
	  
	  

•  τ-‐	  torus	  complex	  structure:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  string	  coupling	  (axion-‐dilaton)	  

•  Torus	  –	  fibered	  over	  a	  compac+fied	  (base)	  space	  B	  

	  	  	  	  	  	  i.e.	  torus	  coordinates	  depend	  on	  the	  base	  B	  

	  	  	  	  	  	  Torus=	  ellip+c	  curve	  

	  	  	  	  	  	  Weierstrass  form: 
 
     f, g- function fields on B 
     [z:x:y]  coords on P2(1,2,3) 
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F-‐theory:	  basic	  ingredients	  

⌧
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τ(z) 

At 	  brane	  loca+on	  in	  B	  torus	  degenerates	  	  w/	  	  gsè∞	  singular:	  
String	  Theory	  in	  non-‐perturba+ve	  regime	  

D7 



•  Total	  space	  of	  torus-‐fibra+on:	  singular	  ellip+c	  Calabi-‐Yau	  manifold	  X	  	  

	  	  	  	  	  	  D=4,	  N=1	  vacua:	  fourfold	  	  X4	  	  	  	  	  	  	  	  	  	  	  	  	  [all	  dimensions	  complex]	  

•  Singulari+es	  encode	  complicated	  set-‐up	  of	  intersec+ng	  D-‐branes:	  
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Non-‐Abelian	  gauge	  
symmetry in	  codimension-‐
one	  singul.	  in	  B	  (divisors  
wrapped by branes)   

MaXer in	  codimension-‐	  
two	  	  singul.	  in	  	  B	  
(intersecting branes) 

•  Total!space!of!T2(τ)<fibra+on:!singular!ellip+c!Calabi<Yau!manifold!X!!

!!!!!!D=4,!SUSY!vacua:!fourfold!!!X4!!!!!!!!!!!![D=6,!SUSY!vacua:!threefold!!X3]!
•  X4<singulari+es!encode!complicated!set<up!of!intersec+ng!7<branes:!

!
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!
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Gauge!theory!(ADE…)
in!co<dim.!one!in!B3!
(7<branes)!

Majer!in!co<dim.!!
two!in!!B3!!
(intersec+ng!7<branes)!

Yukawa!couplings!
!in!co<dim.!three!in!B3!
!!!!

G4<flux!at!intersec+on!!
induces!chiral!4D!majer!

[Katz,Vafa]
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Highlights: Non-Abelian Gauge Symmetry 

1. Weierstrass form for elliptic fibration  of X 

2. Severity of singularity along divisor S in B: 

 

3.  Resolution: singularity type ßà  structure of a tree of     ‘s over S 

       

y

2 = x

3 + fxz

4 + gz
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[Kodaira; Tate; Vafa; Morrison,Vafa;…]

P1

In-singularity ßà SU(n) Dynkin diagram 

 [ordS(f),ordS(g),ordS(Δ)] ßà  Singularity type of fibration of X 
 B 

P1
1 P1

2 P1
3 P1

4

-  Cartan generators  for Ai gauge bosons: in M-theory via Kaluza-Klein 
(KK)  reduction of C3 potential along (1,1)-forms                  on X 

-  Non-Abelian generators: light M2-brane excitations on     ‘s 
C3 � Ai!i

!i $ P1
i

P1 [Witten] 

Deformation: [Grassi, Halverson, Shaneson] 



Highlights: Matter 
 
 
 

    Singularity at codimension-two in B:   
   

    I2 fiber                          Singular fiber  

 B yQ = 0

fz

4
Q + 3x2

Q = 0

resolved 



Highlights: Matter 
 
 
 

    Singularity at codimension-two in B:   
   

cmat

    I2 fiber                          Singular fiber  

 B yQ = 0

fz

4
Q + 3x2

Q = 0

w/isolated (M2-matter) curve wrapping      à charged matter 
                                               (determine via intersection theory) 

resolved 

P1



Model Constructions: 
                      [Donagi,Wijnholt’09-10]…[Marsano,Schäfer-Nameki,Saulina’09-11]…
                                                                                           Review: [Heckman]


Initial focus: F-theory with SU(5) Grand Unification            
                                   [Donagi,Wijnholt’08][Beasley,Heckman,Vafa’08]… 

 

[Blumehagen,Grimm,Jurke,Weigand’09][M.C., Garcia-Etxebarria,Halverson’10]…  
[Marsano,Schäfer-Nameki’11-12]…[Clemens,Marsano,Pantev,Raby,Tseng ’12]…

                                                                              


First Global 3-family Standard, Pati-Salam, Trinification Models  
[M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]�


highlights 

Recent progress on other Particle Physics Models: 
 
Standard Model building blocks  (via tops of dP2) [Lin,Weigand’14] 

                                     a bit more later
                             c.f.,  Hebecker’s talk




I. Particle Physics & F-theory 
concrete examples 



   
Construction of Torus Fibrations  
 
i.  Torus = elliptic curve      
       Examples of constructions via toric techniques:  
           as a Calabi-Yau hypersurface in the two-dimensional toric variety      ,                
     (generalized projective spaces, associated with 16 reflexive polytops    ): 
 
 
 
     
 
      
 
   

✤ Combinatorics of      encodes geometry of toric variety                  
➡ representation as generalized projective space

✤ Genus-one curve as CY-hypersurfaces in                                 

✤ Three different types of        and curves 
1. cubics in       = blow-ups of       (14 cases)
2. quartic in       =                              (1 case)
3. biquadric in       =                          (1 case)

Toric varieties and their genus one curves
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PFi

PFi

Dual Polytopes and Mirror Symmetry

the mirror dual polytopes are

F

⇤
i = {q 2 M ⌦ R|hy , qi � �1, 8y 2 Fi}

constructing the dual polytope for Fi leads to F17�i , 1  i  6

Fi , 7  i  10, are selfdual

smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula
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q2F⇤
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aq

Y
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x

hvk ,qi+1
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ii.  Elliptically fibered Calabi-Yau space: 
 
    Impose Calabi-Yau condition:  
    coordinates in         and coeffs. of        lifted to 
    sections on (specific functions of) B 
      
     

1. Ambient space: fiber        over B

✤ Fibration completely determined by  
two divisors       and       on B 

‣ parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of        

✤ impose CY-eq.                 in fiber:

✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a

17
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In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
certain specialization of the hypersurface of XF1 with some aq ⌘ 0. We will be more explicit
about this in the following subsection (Section 3.1.2).
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  Model Building Strategy: 
 
 i. Construction of  XFi   w/ Particle Physics  
     gauge symmetry (codim-1), matter reps. (codim-2) & Yukawas (codim-3) 
   
   F11 - Standard Model 
   
     
    
   
 
    
    
   F13 - Pati-Salam Model 
   
   F16 - Trinification Model 
 
 
  

Natural unification structure in toric Higgs branch:  
 
 
 

Phenomenologically interesting examples 

1. Standard-Model-like theory:  

✤ All gauge invariant 4D Yukawas realized.

2. Pati-Salam-like theory:                correct         , reps & Yukawas.

3. Trinification-like theory:                 correct         , reps & Yukawas. 

Representation

Multiplicity

Representation Multiplicity Splitting Locus

(3,2)1/6 S9([K
�1
B ] + S7 � S9) V (I(1)) := {s3 = s9 = 0}

(1,2)�1/2
([K�1

B ] + S7 � S9)

(6[K�1
B ]� 2S7 � S9)

V (I(2)) := {s3 = 0

s2s
2
5 + s1(s1s9 � s5s6) = 0}

(3̄,1)�2/3 S9(2[K
�1
B ]� S7) V (I(3)) := {s5 = s9 = 0}

(3̄,1)1/3 S9(5[K
�1
B ]� S7 � S9)

V (I(4)) := {s9 = 0

s3s
2
5 + s6(s1s6 � s2s5) = 0}

(1,1)1
(2[K�1

B ]� S7)

(3[K�1
B ]� S7 � S9)

V (I(5)) := {s1 = s5 = 0}

(8,1)0 1 + S9
S9�[K�1

B ]

2 Figure 19 s9 = 0

(1,3)0
1 + S7�S9

2

⇥([K�1
B ] + S7 � S9)

Figure 19 s3 = 0

Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 ⇥ U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B and
general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12 can be
extracted from Figure 20, where the fiber polyhedron F12 together with a choice of homogeneous
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Table 20: Charged matter representations under SU(3) ⇥ SU(2) ⇥ U(1) and corresponding
codimension two fibers of XF11 . The adjoint matter is included for completeness.

3.5.2 Polyhedron F12: GF12 = SU(2)2 ⇥ U(1)2

In this section, we analyze the elliptically fibered Calabi-Yau manifold XF12 with base B and
general elliptic fiber given by the elliptic curve E in PF12 . The toric data of PF12 can be
extracted from Figure 20, where the fiber polyhedron F12 together with a choice of homogeneous
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⇥

XF16 GF16

XF13 GF14

Standard Model

Trinification

Pati-Salam

XF11

SM via tops of dP2: [Lin,Weigand]

[DK,Mayorga-Pena,Oehlmann,Reuter,Piragua]

focus 

Toric hypersurface fibrations for 4D chiral F-theory models: In order to introduce
some notation used throughout this work, we conclude this introductory section with a very
brief review of CY-fourfolds X constructed as toric hypersurface fibrations. A detailed account
on this subject can be found in [22].

We consider here elliptically fibered Calabi-Yau manifolds XFi whose elliptic fiber is realized
as the general CY-hypersurface in a 2D toric variety PFi associated to one of the 2D reflexive
polyhedra Fi. Here we focus on the polyhedra F11, F13 and F16 in [22], that naturally yield
phenomenologically interesting models. In these cases, the corresponding toric ambient vari-
eties PFi of the elliptic fiber are blow-ups of P2. The elliptic curves in all considered cases is
consequently given as an appropriate specialization of the general cubic

p = s1u
3 + s2u

2v + s3uv
2 + s4v

3 + s5u
2w + s6uvw + s7v

2w + s8uw
2 + s9vw

2 + s10w
3 . (2.8)

Here the coefficients si take values in a field K and [u : v : w] are projective coordinates on P2.
An elliptic fibration XFi with fiber given by (2.8) or specializations thereof is constructed by

first fibering the toric ambient space PFi over a chosen base B, then imposing (2.8) and finally
demanding the CY-condition. In this procedure, the coordinates [u : v : w] and the coefficients
si in (2.8) are lifted to sections of appropriate line bundles on B. The CY-condition fixes these
line bundles to the following:

section Line Bundle
u O(H + S9 + [KB])

v O(H + S9 � S7)

w O(H)

section Line Bundle
s1 OB(3[K

�1
B ]� S7 � S9)

s2 OB(2[K
�1
B ]� S9)

s3 OB([K
�1
B ] + S7 � S9)

s4 OB(2S7 � S9)

s5 OB(2[K
�1
B ]� S7)

s6 K�1
B

s7 OB(S7)

s8 OB([K
�1
B ] + S9 � S7)

s9 OB(S9)

s10 OB(2S9 � S7)

(2.9)

Here, O(D) denotes the line bundle associated to a divisor D,5 H is the hyperplane on P2,
[K�1

B ] is the anti-canonical divisor of B and S7, S9 are the divisor classes of s7, s9, respectively.
We note that the table on the right hand side in (2.9) applies for all examples studied below.

3 Minimal Supersymmetric Standard Model:
GF11 = SU(3) ⇥ SU(2) ⇥ U(1)

In this section we discuss an F-theory compactification on the elliptically fibered CY-manifold
XF11 which yields precisely the gauge group and representation content of the Minimal Super-
symmetric Standard Model (MSSM) [22].

5A subscript indicates the space over which this line bundle is defined, e.g. OB(D) denotes a line bundle
over B. If a subscript is omitted, the line bundle lives on the ambient space of X.
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In Section 3.1 we elaborate on the basic geometrical properties of XF11 that encode the
gauge symmetry, including the U(1) generator, as well as the matter representations. While
these observations are model independent, we further specialize to the simple base B = P3. For
this specific case we compute the vertical cohomology H

(2,2)
V (XF11) in Section 3.2. Using these

results, we explicitly construct G4-flux consistent with all F-theory consistency constraints.
We compute the induced 4D chiralities of the matter representations, that we double-check
employing 3D CS-terms and M-/F-theory duality. Next in Section 3.3 we discuss 4D anomaly
cancelation and the properties of models which exhibit a complete family structure, in particular
the existence of three family models with positive and integral D3-brane charge and quantized
G4-flux. In Section 3.4 we conclude with some comments on the phenomenology of the three
family models we found.

The elliptic fibration XF11 has been completely analyzed in [22], to which we refer for
more details on its codimension one, two and three singularities and the corresponding 6D
F-theory compactification. The relevant results are summarized in Section 3.1. The reader
less interested in the technical details can directly jump to the 4D chiralities in (3.17) and the
following discussions.

3.1 The Geometry of Gauge Symmetry and Particle Representations

Section Line Bundle
u O(H � E1 � E2 � E4 + S9 + [KB ])
v O(H � E2 � E3 + S9 � S7)
w O(H � E1)
e1 O(E1 � E4)
e2 O(E2 � E3)
e3 O(E3)
e4 O(E4)

Figure 1: The toric diagram of polyhedron F11 and its dual. The zero section is indicated by
the dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

The elliptic fiber which is used to engineer F-theory models that naturally exhibit the gauge
symmetry of the standard model is given as the CY-hypersurface

pF11 = s1e
2
1e

2
2e3e

4
4u

3 + s2e1e
2
2e

2
3e

2
4u

2v + s3e
2
2e

2
3uv

2 + s5e
2
1e2e

3
4u

2w + s6e1e2e3e4uvw + s9e1vw
2

(3.1)

in the toric ambient space PF11 . Its toric data is summarized in Figure 1. The divisor classes
in PF11 are H, the hyperplane class of P2, as well as the four exceptional divisors E1, E2, E3

and E4.
Next, an elliptically fibered CY-fourfold XF11 with the elliptic fiber (3.1) is constructed by

promoting the coefficients si in the CY-equation to sections of the line bundles of B given in
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[hypersurface constraint in dP4 (     [u:v:w] with four blow-ups [e1:e2:e3:e4]) n=0:'''Tate'form'in'''''''''''''''''

n=1:"""E'with'P,"Q'is'generic'CY'in'''''''''''''''''''''''''''

n=2:"""E'with'P,"Q,"R'is'generic'CY'in'dP2"

n=3:"""E'with'P,"Q,"R,"S'is'CICY'in''''''''''

n=4'is'determinantal'variety'in'''''

'higher'n,'not'clear…!!!!!

Features:'
•  CY>ellip+c'fibra+ons'automa+cally'smooth'

•  For'n=0,1,2,3:"zero>sec+on''''''''is'non>holomorphic
s+ll'valid'F>theory'background'

Explicit'Examples'

[Borchmann,Mayerhofer,Palti,Weigand;
 M.C.,Klevers,Piragua]

[M.C.,Klevers,Piragua,Song]

[Morrison,Park]

P2(1, 2, 3)

Bl3P3

Bl1P2(1, 1, 2)

P4 work in progress: [M.C.,Klevers,Piragua,Song]

ŝP



ii.  Chiral index for D=4 matter:  
     
                      
       
  a) construct G4 flux by computing  
  b) determine matter surface      (via resultant techniques) 
        

4D'ma\er'spectrum:'summary'

4D>ma\er'representa+ons'the'same'(all'in'the'fiber)'
4D'ma\er'chirali+es!='codim.'2'ma\er'loci in'B'+'G4>flux:

Geometry:'I.Ma\er'surfaces:'

'''''''''''''''''''points'in'B2''ma\er'curves'''''''''in'B3'
''''''''''''''''''(2)'Ma\er'surfaces'found'

''''''''''''''''''(1)'Ma\er>hard'

'''''''''''''II.'G4>flux:''

'''''''''''''''''Construc+on'of'ver+cal'middle'homology''''''''''''''''''''''''

''''''''''''''''''First'construc+on'of'G4>flux'with'non>holomorphic'zero>sec+on''

⌃R

Here we extend this geometric analysis to fourfolds. The main di↵erence to the 6D
case is that matter is not localized anymore at points in B, but on in general rather
complicated matter curves. The determination of these matter curves and some of their
associated matter surfaces, along with the Yukawa points, is presented in section 3.1.
Then, in section 3.2 we present a method to determine the cohomology ring of the
fourfold X̂. We use these techniques to derive general expressions for the Euler number
of X̂ and its second Chern class. For the example of B = P3 we finally compute the full
vertical cohomology group. These calculations serve as a preparation for the computation
of 4D chiralities in section 4, which requires the construction of G4-flux.

3.1 Singularities of the Fibration: Matter Surfaces & Yukawa
Points

3.1.1 Matter: Codimension Two

In general, the determination of the matter sector in F-theory vacua with general gauge
group requires a detailed analysis of singularities of the elliptic fibration of the Calabi-Yau
fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.
Then one has to identify the isolated rational curve cw in the fiber over these loci,
since these correspond in F-theory to matter in a representation R from wrapped M2-
brane states. These curves are in one-to-one correspondence to the weights w of the
representations R and accordingly labeled. In the case of elliptically fibered Calabi-Yau
fourfolds, the codimension two matter loci are Riemann surfaces of genus g, the so-called
matter curves ⌃R in B conveniently labeled by the corresponding matter representation
R. In addition, for the determination of four-dimensional chirality, compare section ??,
we have to know the homology classes of the associated matter surfaces [?]

cmat
// CR

✏✏

⌃R

(3.1)

which are constructed as the fibration of the rational curve cw corresponding to a given
weight w of the representation R fibered over ⌃R.

In this section we determine the matter curves ⌃R and the matter surfaces Cw
R for the

six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their
determination is complicated by the fact that three of the six the codimension two loci in
the base B where the elliptic fiber E becomes reducible are themselves reducible curves.
Their irreducible components are multiple di↵erent matter curves ⌃R. Some of these
matter curves, denoted ⌃R0 , fail to be complete intersection and can only be described in
terms of their prime ideals. However, these prime ideals are straightforwardly constructed
from the two equations of the original reducible codimension two locus. However, the
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H
(2,2)
V (X̂)

[M.C.,Grassi,Klevers,Piragua]

�(R) = �1

4

Z

CR

G4

iii. Global consistency – D3 tadpole cancellation: 
  
 
 
   a) satisfied for integer and positive nD3  
   b) check, all anomalies are cancelled 
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fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.
Then one has to identify the isolated rational curve cw in the fiber over these loci,
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fourfolds, the codimension two matter loci are Riemann surfaces of genus g, the so-called
matter curves ⌃R in B conveniently labeled by the corresponding matter representation
R. In addition, for the determination of four-dimensional chirality, compare section ??,
we have to know the homology classes of the associated matter surfaces [?]
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weight w of the representation R fibered over ⌃R.

In this section we determine the matter curves ⌃R and the matter surfaces Cw
R for the

six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their
determination is complicated by the fact that three of the six the codimension two loci in
the base B where the elliptic fiber E becomes reducible are themselves reducible curves.
Their irreducible components are multiple di↵erent matter curves ⌃R. Some of these
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quantization condition [81]:

G4 +
c2(X)

2
2 H4(X,Z) . (2.1)

Second, the cancelation of M2-brane tadpoles, which lift to D3-brane tadpoles in Type IIB
strings and F-theory, requires the equality [82,83]

�(X)

24
= nD3 +

1

2

Z

X

G4 ^G4 , (2.2)

where nD3 denotes the number of D3-branes. As mentioned before, we will focus here on special
G4-flux that is entirely in the subgroup H

(2,2)
V (X).3

For compatibility with the duality between M- and F-theory, we need to impose additional
conditions on the G4-flux. These are most easily formulated in terms of conditions on the
Chern-Simons (CS) terms for the three-dimensional vectors on the Coulomb branch of the
effective action of the M-theory compactification on the CY-fourfold X. On the M-theory side,
these CS-terms are given by [87]

⇥M
AB =

Z

X

G4 ^DA ^DB , (2.3)

where here and in the following, Poincaré duality is always understood. We note that the 3D
CS-terms have obey the quantization condition ⇥M

AB 2 Z or Z/2, see e.g. [88, 89] for recent
discussions. We note that these quantization conditions are expected to be equivalent to the
G4-flux quantization conditions (2.1) [85].

In the dual F-theory side the same CS-terms, denoted now by ⇥F
AB, have two contributions.

First, we can have classical CS-terms ⇥F
cl, AB, which either descend from 4D to 3D from gaugings

of axions or which correspond to circle fluxes [90]. Second, CS-terms on the 3D Coulomb
branch receive one-loop corrections from integrating out massive fermions [91–93]. In the
duality between M- and F-theory, it is crucial to include all Kaluza-Klein (KK) states in the
loop [15,54],4 yielding the full loop corrected CS-terms expression

⇥F
AB = ⇥F

cl, AB +
1

2

X

q

n(q)qAqB sign(qA⇣A) . (2.4)

Here n(q) is the number of 3D fermions with charge vector q = (q0, q↵, qi, qm). It includes
the charge q0 w.r.t. the 3D graviphoton, i.e. the KK-level of states, the charges q↵, ↵ =
1, . . . , h(1,1)(B), under 3D vectors dual to the Kähler moduli of B, the charges qi, i = 1, . . . , rk(G),
and qm, m = 1, . . . , r, w.r.t. to 4D Cartan gauge fields of the non-Abelian gauge group G of
F-theory and the r U(1) gauge fields, respectively. The real parameters ⇣A are the Coulomb
branch parameters.

Duality requires an identification of the CS-terms on the F-theory side with those in (2.3)
on the M-theory side [14,15,51,54,94,95],

⇥AB ⌘ ⇥M
AB

!
= ⇥F

AB . (2.5)
3For recent analyses of horizontal G4-flux in F-theory, see [77,84–86].
4See also [57] for the case of CS-terms in 5D M-/F-theory duality.
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This immediately leads to additional restrictions on the CS-terms in F-theory [15, 37, 51, 54],
because certain CS-terms ⇥F

AB in F-theory computed according to (2.4) are identically zero.
Physically, the implied constraints on the G4-flux ensure the absence of circle flux in the circle
compactification from F- to M-theory, an unbroken non-Abelian gauge group in 4D due to the
absence of axion gaugings and the absence of non-geometric effects,

⇥0↵ = ⇥i↵ = ⇥↵� = 0 . (2.6)

Here we have to chose the basis DA of H(1,1)(X) so that index 0 corresponds to the zero section
ŝ0 of the fibration of X, ↵ = 1, . . . , h(1,1,)(B), labels the vertical divisors induced from the base
B, i = 1, . . . , rk(G) labels the Cartan divisors of X, where G as before is non-Abelian part of
the F-theory gauge group, and m = 1, . . . , r labels the r U(1)-factors corresponding to Shioda
maps �(ŝm) of the rank r Mordell-Weil (MW) group of rational sections ŝm of X.

Chiralities in F-theory and G4-flux quantization: In order to calculate the matter chiral-
ities �(R) for a given matter representation R in a four-dimensional F-theory compactification,
we need to integrate the G4-flux over a corresponding matter surface in X. The relevant matter
surface Cw

R is given as the rational surface constructed by fibering a P1 carrying the weight w
of the representation R over the corresponding matter curve in the base B. The 4D chirality
of R is computed as

�(R) = n(R)� n(R̄) =

Z

Cw
R

G4 , (2.7)

where n(R) denotes the number of left-chiral Weyl fermions in the representation R.
Technically, the determination of the Cw

R can be involved and requires the computation of
the homology class of prime ideals describing the given matter surface. This can be done using
the resultant technique that was applied first in [15, 56] for F-theory and will be exemplify for
the three examples studied in this work. As a consistency check of our geometric computations,
following [15, 51, 54], we use the matching condition (2.5) of the CS-terms to double-check the
4D chiralities calculated using (2.7).

Finally, let us comment on G4-flux quantization. In principal, in order to address G4-
flux quantization we have to expand G4 and c2(X) in an integral basis for H

(2,2)
V (X) and

check the condition (2.1). This integral basis can be determined employing mirror symmetry
techniques [77, 84, 86]. Since this is beyond the scope of this work, we will apply an indirect
approach to ensure integral G4-flux.

Here we exploit that G4-flux quantization (2.1), the integrality of the number nD3 of D3-
branes, that is a necessary condition for quantized G4-flux [81], the integrality of the CS-terms
(2.3) and of the chiralities (2.7) are obviously linked to each other. Thus, our strategy will be
the following. First, we compute all chiralities �(R) using (2.7). Then, we parametrize the
coefficients in the expansion of the G4-flux w.r.t. a basis of H(2,2)

V (X) in terms of these integral
chiralities. We then impose the necessary condition of integrality and positivity of nD3. This
will yield in turn constraints in form of lower bounds on the 4D chiralities. Next, we impose,
if possible, a family structure on our model. Finally, we check that for this phenomenologi-
cally preferred choice of G4-flux all CS-terms are integral, which ensures that the quantization
condition (2.1) is obeyed.
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coefficients in the expansion of the G4-flux w.r.t. a basis of H(2,2)

V (X) in terms of these integral
chiralities. We then impose the necessary condition of integrality and positivity of nD3. This
will yield in turn constraints in form of lower bounds on the 4D chiralities. Next, we impose,
if possible, a family structure on our model. Finally, we check that for this phenomenologi-
cally preferred choice of G4-flux all CS-terms are integral, which ensures that the quantization
condition (2.1) is obeyed.
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Classify'all''vacua'with'fixed'E'in'dP2''&'chosen'base'B'in'D=6'and'D=4''
Example:'D=4,''

:'

1.''!X'''generic'[all'si'exist,'generic]:'U(1)'x'U(1)'

2.'!X''non>generic'[si,realize'SU(5)'at't=0]:'SU(5)'x'U(1)'x'U(1)'

S7 = n7HP3

S9 = n9HP3

s3 = t2s03

s2 = t2s02

s5 = ts05

s1 = t3s01

Construc+on'of'CY''Ellip+c'Fibra+ons'

B = P3

Can construct and  
study entire family  
of CY’s explicitly 

Base B = Divisors in the base: 

n7\n9 1 2 3 4 5 6 7

7 - (27; 16) - -
6 - (12; 81) (21; 42) - -
5 - - (12; 57) (30; 8) - (3; 46)

4 (42; 4) - (30; 32) - - - -
3 - (21; 72) - - - (15; 30)

2 (45; 16) (24; 79) (21; 66) (24; 44) (3; 64)

1 - - - -
0 - - (12; 112)

-1 (36; 91) (33; 74)

-2 -
Table 2: The entries (b, n

D3

) show the minimal number of families b for which the number
n

D3

of D3-branes is integral and positive for integral 3D CS-terms. At the allowed points for
(n7, n9) marked as "-" the number of D3-branes is negative for all positive integral values of b.

and compute the individual numbers of left- and right-chiral fermions for the G4-flux (3.14).
Unfortunately, these techniques are not available as of now, see however [100] for promising
recent advancements in this direction. Thus, we work in the following under the assumption
that the desired vector-like pair is indeed part of the massless spectrum. Then it would be
possible to induce the following bilinear coupling

W ⇢ µHuHd + �iHuLi . (3.25)

These two terms could be generated by tuning the complex structure of our model to a model
with enhanced (non-Abelian or Abelian) gauge symmetry and a SM-singlet 1, that admits
Yukawa couplings with Hu, Hd and Li, respectively. Then if 1 acquires a VEV, which breaks
the enhanced gauge symmetry, the superpotential (3.25) could be generated. While the µ-
term has to be very small in order to be consistent with electroweak symmetry breaking, the
�i terms are lepton violating and hence they must be adequately suppressed. We note that
both these coefficients are moduli dependent functions, that cannot be computed by known
techniques. However, we expect that in a sufficiently generic geometry the moduli of XF11

allow for appropriate tunings providing a phenomenologically viable scenario. At this point,
we must remark that the geometry of XF11 offers no obvious way by which we could assign a
quantum number to forbid the µ-term or the �i terms.

Regarding the trilinear couplings we note that it was shown in [22] that all gauge invariant
trilinear couplings are realized geometrically, see Table 3.
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Solutions (#(families);nD3) for allowed (n7,n9): 

Standard Model: 

S7 = n7HP3

S9 = n9HP3



Pati-Salam Model     
Solutions (#(families);nD3) for allowed (n7,n9): 

n7\n9 1 2 3 4 5 6 7

10 (13; 204)

9 - (11; 140)

8 (33; 94) (10; 119) (9; 90)

7 - (9; 100) (6; 77) (14; 48)

6 (15; 108) (8; 86) (21; 52) (12; 46) (5; 44)

5 (6; 106) (35; 44) - (30; 16) - (3; 44)

4 (7; 102) (6; 75) (15; 50) (8; 42) (15; 30) (6; 41) (7; 42)

3 (6; 106) (35; 44) - (30; 16) - (3; 44)

2 (15; 108) (8; 86) (21; 52) (12; 46) (5; 44)

1 - (9; 100) (6; 77) (14; 48)

0 (33; 94) (10; 119) (9; 90)

-1 - (11; 140)

-2 (13; 204)

Table 5: The entries (b;nD3) show the minimal number of families b for which the number
of D3 branes nD3 is integral and positive for integral 3D CS terms. At the points marked with
"-" the number of D3 branes is negative for all positive integral values of b.

in (2.4). We obtain the non-vanishing CS-terms

⇥F
i,i = �2�4,1,2 (i = 1, . . . , 5) , ⇥F

i=3,j=4 = ⇥F
i=4,j=5 = ��4,1,2 , (4.16)

where the indices label the five Cartan divisor {DSU(2)1
1 , D

SU(2)2
1 , D

SU(4)

1 , D
SU(4)

2 , D
SU(4)

3 }i. Equat-
ing this with the CS-terms (2.3) on the M-theory side we readily reproduces (4.14).

4.3 Phenomenological Discussion

In Table 5 we find only two models with (n7, n9) = (5, 6), (3, 6) that allow for three chiral Pati-
Salam families. As in the standard model we see that three is the minimum allowed number of
generations. These two models are equivalent under the reflection along the (4, n9) line, which
reflects the invariance of the theory under exchange of the two SU(2) gauge groups.

The Higgs transition from XF13 to XF11 has been considered for the six dimensional case [22].
However, some of the observations made there immediately carry over to four dimensions.
Similar to the 6D case, the transition happens due to a toric blow-down in the ambient space of
the elliptic fiber of XF13 . In this case we see that blowing down either e4 or e5 in Figure 3 leads
to the toric diagram of F11 in Figure 1. These two transitions are equivalent up to redefinitions
of the coordinates on the fiber, and for this reason we focus only on the blow down of e4 which
leads to F11 in its canonical form.

There are some subtleties that have to be discussed before proceeding with the detailed
discussion of the Higgsings. First, we note that the blow-down process requires a restriction

22



Trinification Model  

n7\n9 1 2 3 4 5 6 7 8 9 10
10 (5; 120)
9 (3; 94) (3; 94)
8 (4; 72) (8; 69) (4; 72)
7 (14; 48) (7; 54) (7; 54) (14; 48)
6 (5; 50) (8; 44) (3; 44) (8; 44) (5; 50)
5 (5; 50) (5; 42) (10; 36) (10; 36) (5; 42) (5; 50)
4 (14; 48) (8; 44) (10; 36) (16; 30) (10; 36) (8; 44) (14; 48)
3 (4; 72) (7; 54) (3; 44) (10; 36) (10; 36) (3; 44) (7; 54) (4; 72)
2 (3; 94) (8; 69) (7; 54) (8; 44) (5; 42) (8; 44) (7; 54) (8; 69) (3; 94)
1 (5; 120) (3; 94) (4; 72) (14; 48) (5; 50) (5; 50) (14; 48) (4; 72) (3; 94) (5; 120)

Table 9: The entries (b;nD3) show the minimal number of families b for which the number of
D3 branes nD3 is integral and the 3D CS-terms are quantized.

minimal value of families, the D3-brane tadpole is canceled at nine different values for (n7, n9).
We have also checked for the three-family models, that all 3D CS-terms (2.3) are integral. We
observe that Table 6 is symmetric as expected by the symmetries of polyhedron F16 and that
there is a family structure for every allowed value of (n7, n9).

As a cross-check of our results (5.13) we verify the matching (2.5) of CS-terms in F- and
M-theory. The non-vanishing CS-terms on the F-theory side computed using (2.4) read

⇥F
11 = �(�(3,3,1) + �(3,1,3)) , ⇥F

12 =
1
2(�(3,3,1) + �(3,1,3)) , ⇥F

22 = �(�(3,3,1) + �(3,1,3)) ,

⇥F
33 = �2�(1,3,3) , ⇥F

34 =
1
2(3�(3,3,1) � �(1,3,3)) , ⇥F

44 = �(3�(3,3,1) � �(1,3,3)) ,

⇥F
55 = �(3�(3,3,1) � �(1,3,3)) , ⇥F

56 =
1
2(3�(3,3,1) � �(1,3,3)) , ⇥F

66 = �2�(1,3,3) .

(5.15)

We readily compute the CS-terms (2.3) in M-theory, which allows us to reproduce precisely the
chiralities in (5.13).

5.3 Phenomenological Discussion

The breaking from the Trinification model to the SM proceeds via two successive Higgsings.
Geometrically, the Higgsings correspond to blow-downs in XF16 induced by toric blow-downs in
the ambient space PF16 of the elliptic fiber. Thus, we can geometrically visualize the Higgsing
directly in the toric diagram of F16, see [22] for details.

More concretely, in order to obtain the CY-hypersurface XF11 starting from XF16 , we have
to perform two blow-downs in the fiber of XF16 that are identified by requiring that the fiber
polyhedron F16 is mapped to F11. There are three possible ways to achieve this. However all of
these are all equivalent due to the symmetries of the polyhedron. For concreteness we choose
here the transition XF16 ! XF11 induced by blowing down the divisor e5 = 0 and subsequently
the divisor e4 = 0 in the toric diagram of F16, see Figure 5. Note that after the blow downs
we indeed get the toric diagram of F11 in Figure 1 reflected along the horizontal axis passing
through the origin.
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Solutions (#(families);nD3) for allowed (n7,n9): 



Yukawa Couplings (codimension-3 singularities)      
 
Generically there for all gauge invariant couplings 
(for MSSM example à µ-problem; R-parity violating terms) 
 
Magnitudes?   
Technology not developed, yet 
- possibly tuned by adjusting complex structure moduli 
- construction of MSSM w/ discrete symmetry  
                                                                    [work in progress, M.C., Klevers,Reuters] 
 
 

Long shot   

Techniques in local models [Marchesano et al.]
Non-perturbative (D3-instanton) effects    
                                                                 [Martucci,Weigand]
 

Detailed Phenomenology  à 



II. U(1)-Symmetries in F-Theory 
 



Physics:!important!ingredient!of!the!Standard!Model!and!beyond!!

Formal!developments:!new!CY!ellip+c!fibra+ons!with!ra+onal!sec+ons!!

!!!!!!!!!!!!Mul+ple!U(1)’s!desirable!!

Abelian!Symmetries!in!F<theory!

Abelian sector rather unexplored 
 A lot of recent progress (‘11-’15):  
[…Morrison,Park; ….Lawrie,Schäfer-Nameki; Borchmann,Mayrhofer,Palti,Weigand;                       U(1)!

 M.C.,Klevers,Piragua; Grimm,Kapfer,Keitel;Braun,Grimm,Keitel; MC,Grassi,Klevers,Piragua;   U(1)2!
 Borchman,Mayrhofer,Palti,Weigand;…
 M.C.,Klevers,Piragua,Song;                                                                                                                                 U(1)3 
….Morrison,Taylor; …] 

                                                                                                          
     [Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,…]         
 

While non-Abelian symmetries extensively studied (‘96…) 
 
: 

      (F-theory applications  [Antoniadis,Leontaris,King,..]) 

Abelian sector rather unexplored 
 
A lot of recent progress ’12-’15: [Grimm,Weigand;… Morrison,Park; M.C.,Grimm,Klevers;… 
Borchmann,Mayrhofer,Palti,Weigand; M.C.,Klevers,Piragua; MC,Grassi,Klevers,Piragua;… 
Braun,Grimm,Keitel; … M.C.,Klevers,Piragua,Song;…Morrison,Taylor;…
M.C.,Klevers,Piragua,Taylor]  



(1,1)<forms!on!X!

!m

!!!!U(1)’s<Abelian!Symmetry!!
!!!!U(1)!!gauge!bosons!Am!should!also!arise!via!!KK<reduc+on!! .!

!

C3 � Am!m

          (1,1) - form                    rational section  !m [Morrison,Vafa ]

&!Ra+onal!Sec+ons 

!
!

!
!

(xQ, yQ, zQ)

Q 

P 
y

2 = x

3 + fxz

4 + gz

6

!!!!!!!Ra+onal!point!Q!on!ellip+c!curve!E!with!zero!point!P!
•  is!solu+on!!!!!!!!!!!!!!!!!!!!!!!!!in!field!K!of!Weierstrass!form!

•  Ra+onal!points!form!a!!group!(under!addi+on)!on!E!
!

!
!

!!Mordell<Weil!group!of!ra+onal!points!
!

points 

Torus Points 

dual to codimension-one divisors 
only I1-fibers 

s 



(1,1)<forms!on!X!

!m

!!!!U(1)’s<Abelian!Symmetry!!
!!!!U(1)!!gauge!bosons!Am!should!also!arise!via!!KK<reduc+on!! .!

!

C3 � Am!m

          (1,1) - form                    rational section  !m [Morrison,Vafa ]

&!Ra+onal!Sec+ons 

!
!

!
!

(xQ, yQ, zQ)

Q 

P 
y

2 = x

3 + fxz

4 + gz

6

!!!!!!!Ra+onal!point!Q!on!ellip+c!curve!E!with!zero!point!P!
•  is!solu+on!!!!!!!!!!!!!!!!!!!!!!!!!in!field!K!of!Weierstrass!form!

•  Ra+onal!points!form!a!!group!(under!addi+on)!on!E!
!

!
!

!!Mordell<Weil!group!of!ra+onal!points!
!

points 

Torus Points 

 Torus=elliptic curve has a marked ``zero’’ point P. 
 For a special shape there can be additional  
 marked ``rational’’ points Q. 
 Rational points form a group under addition on torus.   
 

s 



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X 

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

ŝQ
ŝQ

        Q torus Point 



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X   

        (1,1)-form             constructed from divisor BQ (Shioda map) 

            indeed  (1,1) - form                    rational section  

!m

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

!m

        Q torus Point 



n=0:    with P - generic CY in                   (Tate form) 

n=1:    with P, Q - generic CY in                         

n=2:    with P, Q, R - specific example: generic CY in dP2 

     

           - generalization: nongeneric cubic in  

 

n=3:     with P, Q, R, S - CICY in          

n=4     determinantal variety in  
higher n, not clear…     

 

Explicit Examples with n-rational sections – U(1)n  

 

[Borchmann,Mayerhofer,Palti,Weigand’13;
 M.C.,Klevers,Piragua 1303.6970,1307.6425;
 M.C.,Grassi,Klevers,Piragua 1306.0236] 


[M.C.,Klevers,Piragua,Taylor 1507.05954]

[M.C.,Klevers,Piragua,Song1310.0463]

[Morrison,Park’12]

P2(1, 2, 3)

Bl3P3

Bl1P2(1, 1, 2)

P4  …

Torus=elliptic curve  

P2[u : v : w]



  

representation as hypersurface in dP2 
  
     
               [u:v:w:e1:e2] –homogeneous coordinates of dP2  
                

[M.C., Klevers,Piragua]
[Borchmann,Mayrhofer,Palti,Weigand]

U(1)2: Concrete Example  

P : E2 \ p = [�s9 : s8 : 1 : 1 : 0] ,
Q : E1 \ p = [�s7 : 1 : s3 : 0 : 1] ,

R : Du \ p = [0 : 1 : 1 : �s7 : s9] .

	  	  	  	  u	  	  	  	  	  v	  	  	  	  	  w	  	  	  e1	  	  e2	  
	  	  Sec+ons	  represented	  by	  intersec+ons	  
	  of	  	  different	  divisors	  in	  dP2	  with	  p	  



  

U(1)2: Further Developments 
General U(1)2  construction:     [M.C., Klevers, Piragua, Taylor 1507.05954] 

Study of SU(5) w/ U(1)’s  
[…M.C.,Grassi,Klevers,Piragua’13…]
via tops  [Borchman,Mayrhofer,Weigand’13;Braun,Grimm,Keitel’13;… ]
Systematic analysis 
[Kuntzler,Schäfer-Nameki;Sacco,Lawrie; Lawrie,Schäfer-Nameki,Wong’14]  
Study of SU(5)xU(1)xU(1)  for  Frogatt-Nielson flavor textures 
[Krippendorf, Schäfer-Nameki,Wong 1507.0596]

Study of  non-Abelian enhancement (unHiggsing) to SU(3)xSU(2)2 

by merging rational points  P,Q,R  à  generalizations 

uf2(u, v, w) +
3Y

i=1

(aiv + biw) = 0

degree two polynomial in  f2(u, v, w) P2[u : v : w]



III. Discrete Symmetries in F-Theory 



Physics: important ingredient of beyond the Standard Model physics

Geometry: new Calabi-Yau geometries with genus-one fibrations  

          
         forbid terms for fast proton decay and other R-parity violating terms, 
e.g.,  R-parity (Z2 ), baryon triality (Z3 ) and proton hexality (Z6 ); family textures 
                                                                                 (F-theory implications [Leontaris,King,…])
 

Why	  Discrete	  Symmetries	  in	  F-‐theory?	  

These geometries do not admit a section, but a multi-section  
  Earlier work:[Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;…] 
Recent extensive  efforts’14-’15: [Braun, Morrison; Morrison, Taylor; 
Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson,Garcia-Etxebarria, 
Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; 
M.C.,Donagi,Klevers,Piragua,Poretschkin; Grimm, Pugh, Regalado]



Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!
!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!connected!via!conifold!transi+on!!
!!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

[Morrison, Taylor;
 Anderson, García-Etxebarria, Grimm,  Keitel;  
 Braun, Grimm, Keitel] 



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!connected!via!conifold!transi+on!to!
!!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

I2 –fibers occur at certain co-dimension two 
loci in the base of the elliptic fibration 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

Independent  Sections

Torus fibration degenerates at  
co-dimension two loci àmatter 

n=2 example 



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!
!!!!!!
!!!!!!!!!
!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

blow-down 
(P1 in the geometry with  
 multiple sections collapses) 

Deformation 
(S3  glues several sections  
to a multi-section) 

Conifold transition - Geometry 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

Independent  SectionsIndependent Sectionsn=2 example 



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!appearance!of!massless!field!!

!!!!!!!!!
!!!!!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

blow-down 
(P1 in the geometry with  
 multiple sections collapses) 

Deformation 
(S3  glues several sections  
to a multi-section) 

Conifold transition - Effective theory     
massless field acquires VEV 

I2-fiber 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

I!Independent Sectionsn=2 example 

 ϕ  with charge 2 

     <ϕ>≠0 
U(1)   à   Z2 



!!!!!!!!!!!!!F<theory!compac+fica+on!with!n!!sec+ons!(Abelian!U(1)(n<1))!!!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!connected!via!conifold!transi+on!to!
!!!!!!
!!!F<theory!compac+fica+on!with!an!n<sec+on!!(discrete!Zn!symmetry)!!

blow-down 

deformation 

Since  Abelian symmetries better understood  (c.f., recent works) 
most efforts focus on the geometry and spectrum of  U(1)(n-1),  
to deduce, primarily via effective field theory, implications for Zn. 

     Approach also taken here 

Geometry 

Effective field theory 

Abelian!&!Discrete!Gauge!Symmetry!in!F<theory!

Geometries with n-section        Tate-Shafarevich Group Zn 
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Summary	  and	  Outlook	  	    
•  Highlights of F-theory Compactification  
    Geometric perspective - discrete data:                                               
    gauge symmetry; matter reps and multiplicity;Yukawa couplings 

 
•  Construction of Particle Physics Models 
    SU(5) GUT’s & first examples of  three family         
    Standard, Pati-Salam and Trinification models   (tip of the iceberg) 

•  Conceptual developments:   
    Abelian & Discrete Symmetries (related to MW & TS groups, respectively)  

     highlight U(1)2  & applications 
Issues: continuous data such as coupling magnitudes,… 
               moduli stabilization,…supersymmetry breaking,… 
 Further  study   


