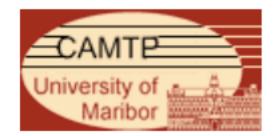


Realistic F-theory Compactifications

Mirjam Cvetič



Outline:

- I. Motivation: F-theory & Particle Physics
- II. Key Ingredients of F-theory Compactification (non-Abelian gauge symmetry, matter, Yukawas)
- III. Particle Physics Model Building (highlight concrete example of MSSM)
- IV. Further Developments: Abelian & Discrete Symmetries in F-theory

Emphasize geometric perspective

Apologies: Upenn-centric

F-theory?

F-theory

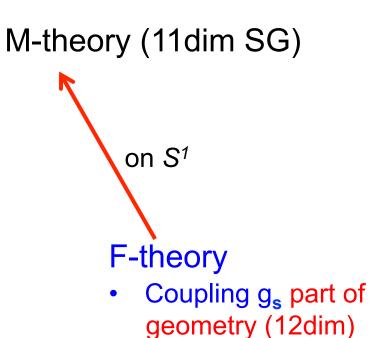
- Coupling g_s part of geometry (12dim)
- Torus fibered
 Calabi-Yau manifold

Type II String

- back-reacted
 D-branes
- regions with large g_s on non-CY space

g_s-string coupling

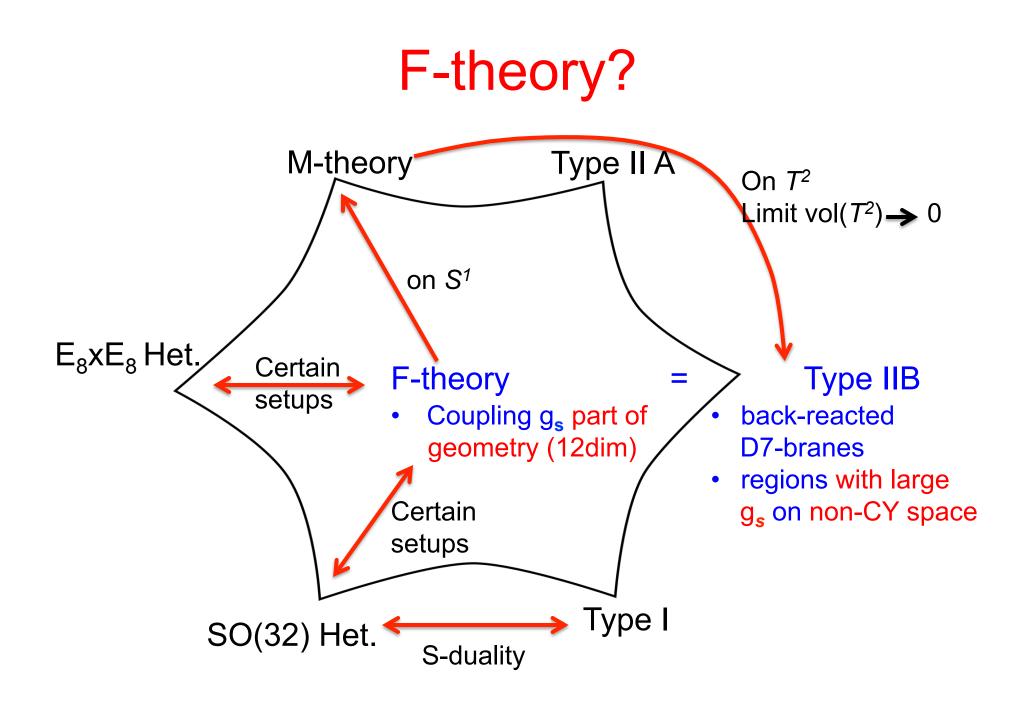
F-theory?



Type IIB

- back-reacted D7-branes
- regions with large g_s on non-CY space

g_s-string coupling



F-theory & Particle Physics
MOTIVATION

F-Theory Motivation

A broad domain of non-perturbative string theory landscape with new promising particle physics & cosmology

(will not address moduli stabilization, though promising)

- SU(5) GUT couplings that are absent in perturbative string theory w/ D-branes, e.g.,10 10 5
- appearance of exceptional gauge symmetries (E₆)
 - [Donagi,Wijnholt'08]
 - [Beasley,Heckman,Vafa'08]....

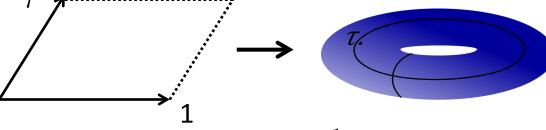
Conceptual: geometric description at large string coupling

• Determine discrete data: gauge symmetry, matter reps. & multiplicities, Yukawa couplings

Type IIB perspective

F-THEORY BASIC INGREDIENTS

• F-theory is a geometric formulation of string theory w/D-branes, where one adds a geometric object: torus w/SL(2,Z) symmetry $\tau \uparrow$

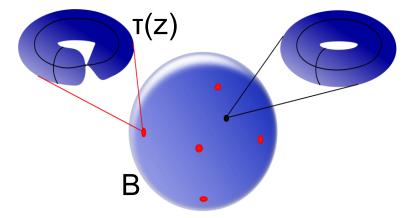


- τ torus complex structure: $\tau \equiv C_0 + ig_s^{-1}$ string coupling (axion-dilaton)
- Torus <u>fibered</u> over a compactified (base) space B

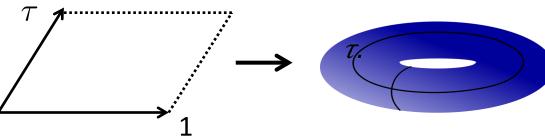
i.e. torus coordinates depend on the base B

Torus= elliptic curve

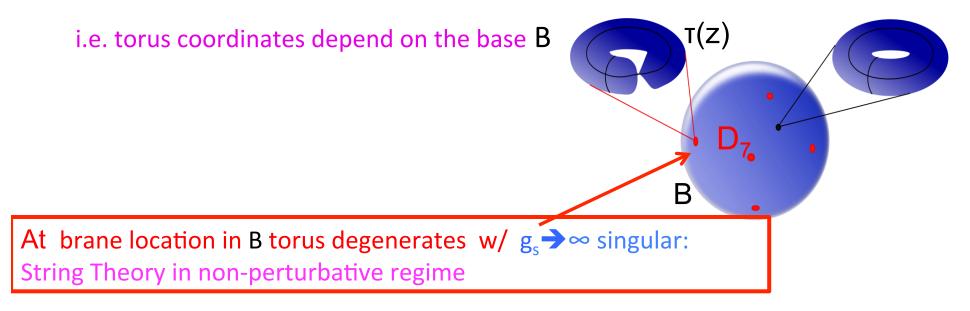
Weierstrass form: $y^2 = x^3 + fxz^4 + gz^6$ f, g- function fields on B [z:x:y] coords on P²(1,2,3)



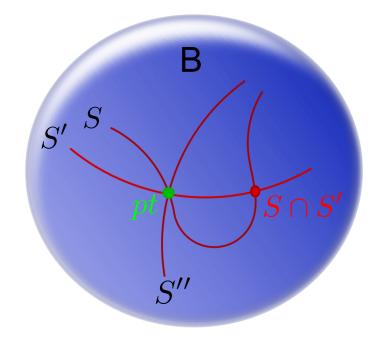
 F-theory is a geometric formulation of string theory w/D-branes, where one adds a geometric object: torus w/ SL(2,Z) symmetry



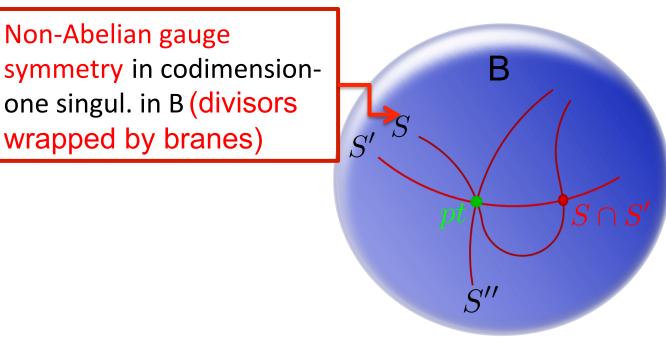
- τ torus complex structure: $\tau \equiv C_0 + ig_s^{-1}$ string coupling (axion-dilaton)
- Torus fibered over a compactified (base) space B



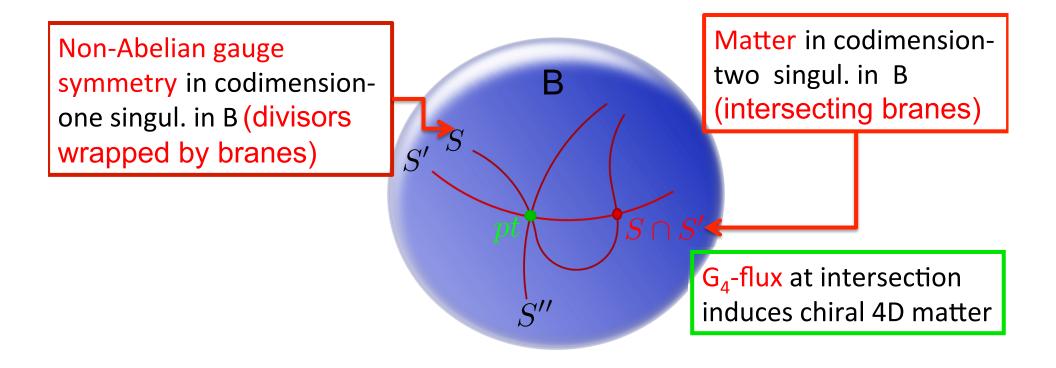
- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X
 D=4, N=1 vacua: fourfold X₄ [all dimensions complex]
- Singularities encode complicated set-up of intersecting D-branes:



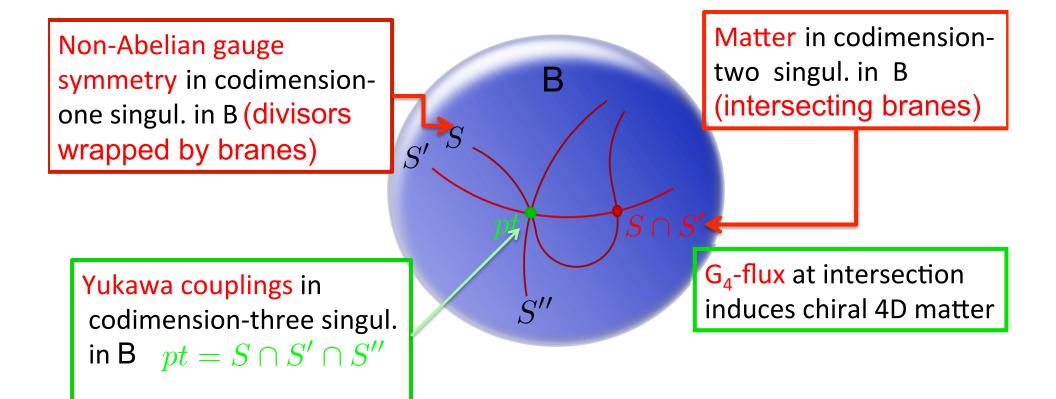
- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X
 D=4, N=1 vacua: fourfold X₄
- Singularities encode complicated set-up of intersecting D-branes:



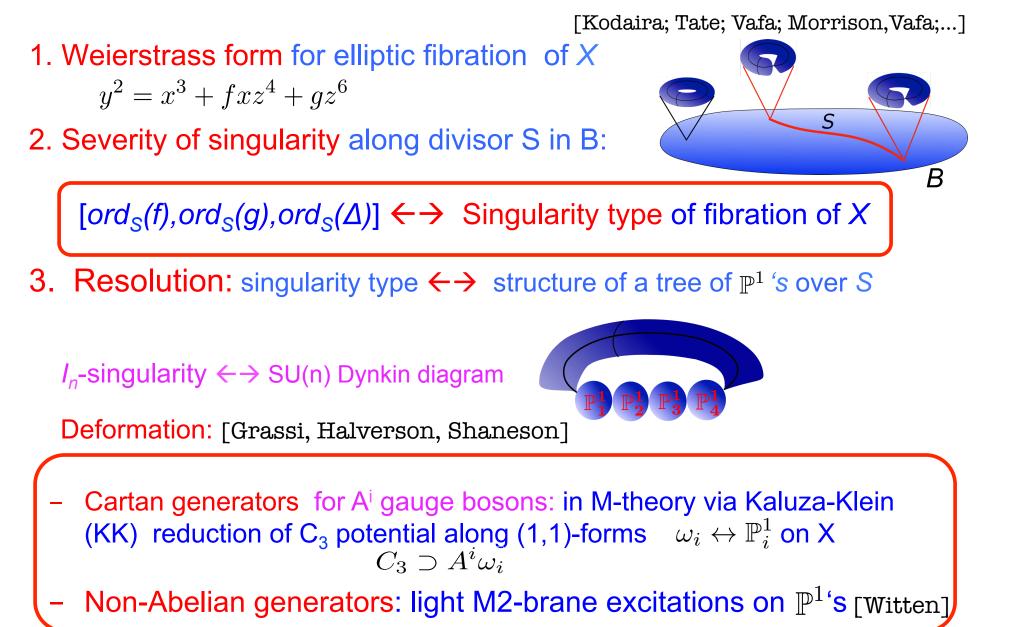
- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X
 D=4, N=1 vacua: fourfold X₄
- Singularities encode complicated set-up of intersecting D-branes:



- Total space of torus-fibration: singular elliptic Calabi-Yau manifold X
 D=4, N=1 vacua: fourfold X₄
- Singularities encode complicated set-up of intersecting D-branes:

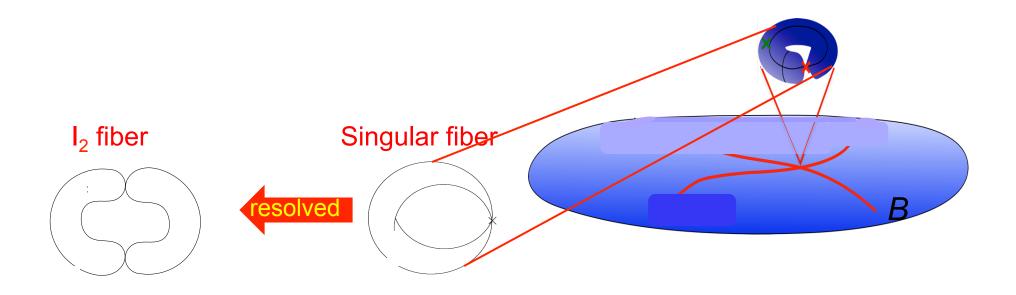


Highlights: Non-Abelian Gauge Symmetry



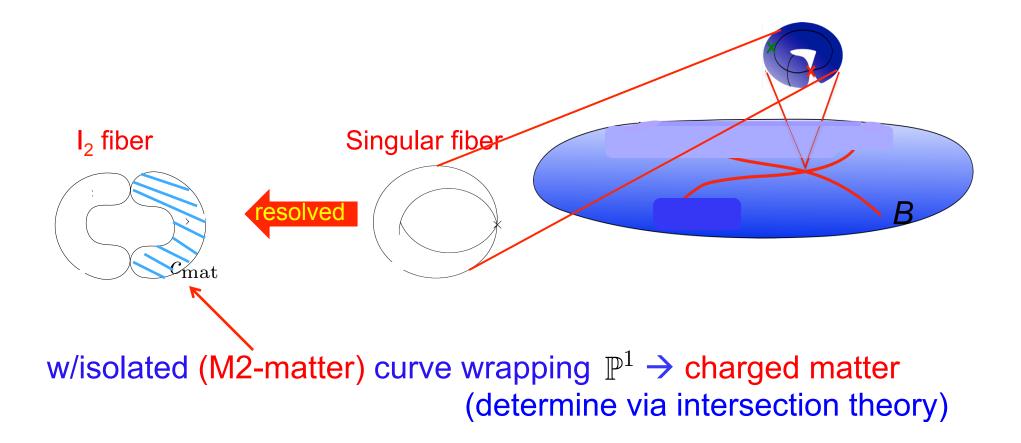
Highlights: Matter

Singularity at codimension-two in *B*:



Highlights: Matter

Singularity at codimension-two in B:



Initial focus: F-theory with SU(5) Grand Unification

[Donagi,Wijnholt'08][Beasley,Heckman,Vafa'08]...

Model Constructions:

[Donagi,Wijnholt'09-10]...[Marsano,Schäfer-Nameki,Saulina'09-11]... Review: [Heckman]

[Blumehagen,Grimm,Jurke,Weigand'09][M.C., Garcia-Etxebarria,Halverson'10]... [Marsano,Schäfer-Nameki'11-12]...[Clemens,Marsano,Pantev,Raby,Tseng'12]...

a bit more later

c.f., Hebecker's talk

Recent progress on other Particle Physics Models:

Standard Model building blocks (via tops of dP₂) [Lin,Weigand'14]

First Global 3-family Standard, Pati-Salam, Trinification Models [M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]

I. Particle Physics & F-theory

concrete examples

Construction of Torus Fibrations

i. Torus = elliptic curvC

Examples of constructions via toric techniques: C_{F_i} as a Calabi-Yau hypersurface in the two-dimensional toric variety \mathbb{P}_{F_i} (generalized projective spaces, associated with 16 reflexive polytops F_i):

[Klevers, Peña, Piragua, Oehlmann, Reuter'14]

$$\mathcal{C}_{F_i} = \{p_{F_i} = 0\}$$
 in \mathbb{P}_{F_i}

ii. Elliptically fibered Calabi-Yau space: X_{F_i}

Impose Calabi-Yau condition: coordinates in \mathbb{P}_{F_i} and coeffs. of \mathcal{C}_{F_i} lifted to sections on (specific functions of) B

 $\mathcal{C}_{F_i} \subset \mathbb{P}_{F_i} \longrightarrow X_{F_i}$ $\downarrow \\ B$

Model Building Strategy:

i. Construction of X_{Fi} w/ Particle Physics gauge symmetry (codim-1), matter reps. (codim-2) & Yukawas (codim-3)

F₁₁ - Standard Model

$${
m SU}(3) imes {
m SU}(2) imes {
m U}(1)$$
 focus

Representation

$$(\mathbf{3}, \mathbf{2})_{1/6}$$
 $(\bar{\mathbf{3}}, \mathbf{1})_{-2/3}$
 $(\bar{\mathbf{3}}, \mathbf{1})_{1/3}$
 $(\mathbf{1}, \mathbf{2})_{-1/2}$
 $(\mathbf{1}, \mathbf{1})_{-1}$

 $p_{F_{11}} = s_1 e_1^2 e_2^2 e_3 e_4^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 u^2 v + s_3 e_2^2 e_3^2 u v^2 + s_5 e_1^2 e_2 e_4^3 u^2 w + s_6 e_1 e_2 e_3 e_4 u v w + s_9 e_1 v w^2$ [hypersurface constraint in dP₄ (\mathbb{P}^2 [u:v:w] with four blow-ups [e₁:e₂:e₃:e₄])

F₁₃ - Pati-Salam Model

F₁₆ - Trinification Model

ii. Chiral index for D=4 matter:

$$\chi(\mathbf{R}) = \int_{\mathcal{C}_{\mathbf{R}}} G_4$$

a) construct G_4 flux by computing $H_V^{(2,2)}(\hat{X})$ b) determine matter surface $\overline{\mathcal{C}_{\mathbf{R}}}$ (via resultant techniques)

 c_{mat}

 $\Sigma_{\mathbf{R}}$

iii. Global consistency – D3 tadpole cancellation:

$$\frac{\chi(X)}{24} = n_{\rm D3} + \frac{1}{2} \int_X G_4 \wedge G_4$$

a) satisfied for integer and positive n_{D3}
 b) check, all anomalies are cancelled

Standard Model:

Base B = \mathbb{P}^3 Divisors in the base: $\mathcal{S}_7 = n_7 H_{\mathbb{P}^3}$ $\mathcal{S}_9 = n_9 H_{\mathbb{P}^3}$

Solutions (#(families); n_{D3}) for allowed (n_7 , n_9):

$n_7 igvee {n_9}$	1	2	3	4	5	6	7
7	-	(27; 16)	_	—			
6	-	(12; 81)	(21; 42)	—	-		
5	_	—	(12; 57)	(30; 8)	—	(3;46)	
4	(42; 4)	—	(30; 32)	—	-	_	—
3	—	(21; 72)	—	—	-	(15; 30)	
2	(45; 16)	(24;79)	(21; 66)	(24; 44)	(3;64)		
1	-	—	-	—			
0	—	—	(12; 112)				
-1	(36; 91)	(33;74)					
-2	—						

Pati-Salam Model

Solutions (#(families); n_{D3}) for allowed (n_7 , n_9):

$n_7 igvee n_9$	1	2	3	4	5	6	7
10	(13; 204)						
9	_	(11; 140)					
8	(33; 94)	(10; 119)	(9; 90)				
7	_	(9;100)	(6;77)	(14; 48)			
6	(15;108)	(8; 86)	(21; 52)	(12; 46)	(5; 44)		
5	(6; 106)	(35; 44)	_	(30; 16)	_	(3; 44)	
4	(7; 102)	(6;75)	(15; 50)	(8; 42)	(15; 30)	(6; 41)	(7; 42)
3	(6; 106)	(35; 44)	—	(30; 16)	-	(3; 44)	
2	(15; 108)	(8; 86)	(21; 52)	(12; 46)	(5; 44)		
1	_	(9;100)	(6;77)	(14; 48)			
0	(33; 94)	(10; 119)	(9;90)				
-1	_	(11; 140)					
-2	(13;204)						

Trinification Model

Solutions (#(families); n_{D3}) for allowed (n_7 , n_9):

$n_7 ig \setminus n_9$	1	2	3	4	5	6	7	8	9	10
10	(5;120)									
9	(3;94)	(3; 94)								
8	(4;72)	(8; 69)	(4;72)							
7	(14; 48)	(7; 54)	(7; 54)	(14; 48)						
6	(5;50)	(8; 44)	(3; 44)	(8; 44)	(5;50)					
5	(5;50)	(5; 42)	(10; 36)	(10; 36)	(5; 42)	(5;50)				
4	(14;48)	(8; 44)	(10; 36)	(16; 30)	(10; 36)	(8; 44)	(14; 48)			
3	(4;72)	(7; 54)	(3; 44)	(10; 36)	(10; 36)	(3; 44)	(7; 54)	(4;72)		
2	(3;94)	(8; 69)	(7; 54)	(8; 44)	(5; 42)	(8;44)	(7; 54)	(8; 69)	(3; 94)	
1	(5; 120)	(3; 94)	(4;72)	(14; 48)	(5; 50)	(5;50)	(14; 48)	(4;72)	(3; 94)	(5; 120)

Yukawa Couplings (codimension-3 singularities)

Generically there for all gauge invariant couplings (for MSSM example $\rightarrow \mu$ -problem; R-parity violating terms)

Magnitudes? Technology not developed, yet

- possibly tuned by adjusting complex structure moduli
- construction of MSSM w/ discrete symmetry

[work in progress, M.C., Klevers, Reuters]

Techniques in local models [Marchesano et al.] Non-perturbative (D3-instanton) effects [Martucci,Weigand]

Detailed Phenomenology \rightarrow Long shot

II. U(1)-Symmetries in F-Theory

Abelian Symmetries in F-theory

Physics: important ingredient of the Standard Model and beyond

Formal developments: new CY elliptic fibrations with rational sections

While non-Abelian symmetries extensively studied ('96...) [Kodaira; Tate; Morrison, Vafa; Bershadsky, Intriligator, Kachru, Morrison, Sadov, Vafa; Candelas, Font,...]

Abelian sector rather unexplored

A lot of recent progress '12-'15: [Grimm,Weigand;... Morrison,Park; M.C.,Grimm,Klevers;... Borchmann,Mayrhofer,Palti,Weigand; M.C.,Klevers,Piragua; MC,Grassi,Klevers,Piragua;... Braun,Grimm,Keitel; ... M.C.,Klevers,Piragua,Song;...Morrison,Taylor;... M.C.,Klevers,Piragua,Taylor]

U(1)'s-Abelian Symmetry

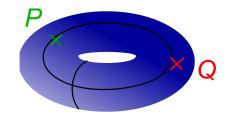
U(1) gauge bosons A^m should also arise via KK-reduction $C_3 \supset A^m \omega_m$ (1,1)-forms on X s dual to codimension-one divisors only I_1 -fibers

U(1)'s-Abelian Symmetry & Rational Torus Points

U(1) gauge bosons A^m should also arise via KK-reduction $C_3 \supset A^m \omega_m$

Torus=elliptic curve has a marked ``zero" point P. For a special shape there can be additional marked ``rational" points Q. Rational points form a group under addition on torus.

(1,1) - forms ω_m \leftarrow rational points

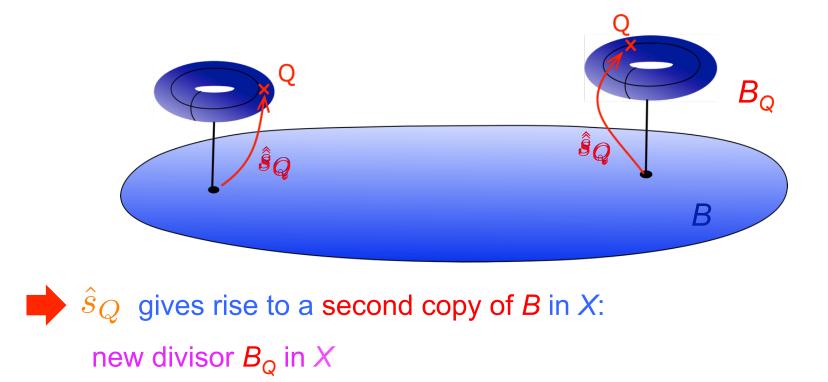


(1,1)-forms on X

[Morrison, Vafa]

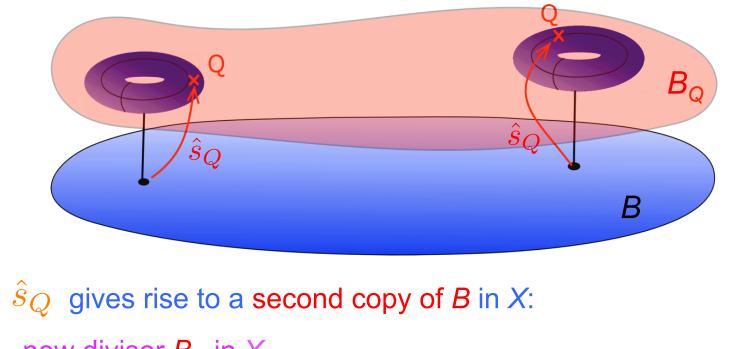
U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point **Q** induces a rational section $\hat{s}_Q : B \to X$ of torus fibration



U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point **Q** induces a rational section $\hat{s}_Q : B \to X$ of torus fibration



new divisor B_Q in X

(1,1)-form ω_m constructed from divisor B_Q (Shioda map) indeed (1,1) - form ω_m rational section

Explicit Examples with n-rational sections – U(1)ⁿ

Torus=elliptic curve

- *n=0*: with P generic CY in $\mathbb{P}^2(1,2,3)$ (Tate form)
- *n*=1: with *P*, *Q* generic CY in $Bl_1 \mathbb{P}^2(1,1,2)$ [Morrison, Park'12]
- *n=2:* with *P*, *Q*, *R* specific example: generic CY in dP_2 [Borchmann,Mayerhofer,Palti,Weigand'13; M.C.,Klevers,Piragua 1303.6970,1307.6425; M.C.,Grassi,Klevers,Piragua 1306.0236] - generalization: nongeneric cubic in $\mathbb{P}^2[u:v:w]$

[M.C.,Klevers,Piragua,Taylor 1507.05954]

n=3: with *P*, *Q*, *R*, *S* - CICY in Bl_3P^3 [M.C.,Klevers,Piragua,Song1310.0463]

<u>*n*</u>=4 determinantal variety in \mathbb{P}^4

higher n, not clear...

U(1)²: Concrete Example

[M.C., Klevers, Piragua] [Borchmann, Mayrhofer, Palti, Weigand]

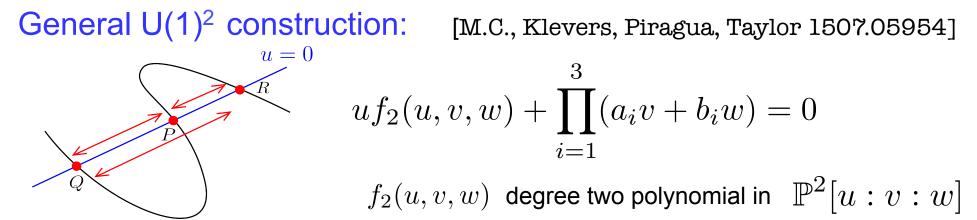
representation as hypersurface in dP₂

 $p = u(s_1u^2e_1^2e_2^2 + s_2uve_1e_2^2 + s_3v^2e_2^2 + s_5uwe_1^2e_2 + s_6vwe_1e_2 + s_8w^2e_1^2) + s_7v^2we_2 + s_9vw^2e_1$

 $[u:v:w:e_1:e_2]$ –homogeneous coordinates of dP₂

Sections represented by intersections of different divisors in dP₂ with p

U(1)²: Further Developments



Study of non-Abelian enhancement (unHiggsing) to SU(3)xSU(2)² by merging rational points P,Q,R \rightarrow generalizations

Study of SU(5) w/ U(1)'s

[...M.C.,Grassi,Klevers,Piragua'13...]

via tops [Borchman, Mayrhofer, Weigand'13; Braun, Grimm, Keitel'13;...] Systematic analysis

[Kuntzler,Schäfer-Nameki;Sacco,Lawrie; Lawrie,Schäfer-Nameki,Wong'14]

Study of SU(5)xU(1)xU(1) for Frogatt-Nielson flavor textures [Krippendorf, Schäfer-Nameki,Wong 1507.0596]

III. Discrete Symmetries in F-Theory

Why Discrete Symmetries in F-theory?

Physics: important ingredient of beyond the Standard Model physics

forbid terms for fast proton decay and other R-parity violating terms, e.g., R-parity (Z_2), baryon triality (Z_3) and proton hexality (Z_6); family textures (F-theory implications [Leontaris,King,...])

Geometry: new Calabi-Yau geometries with genus-one fibrations

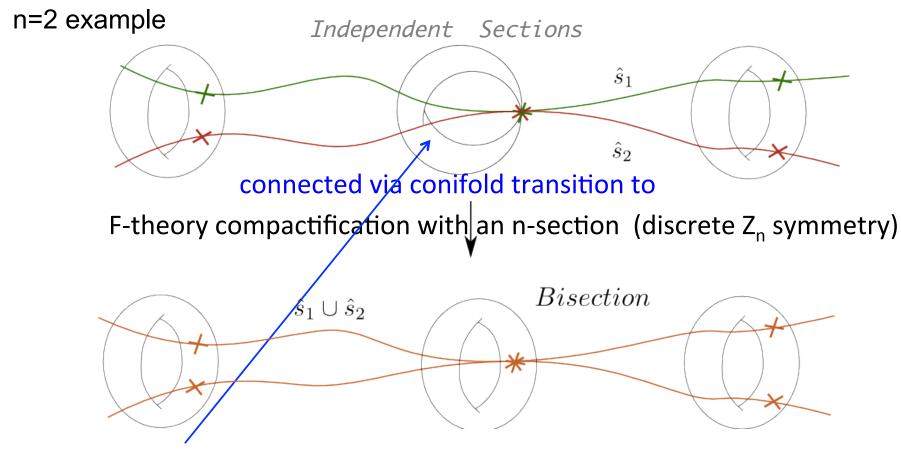
These geometries do not admit a section, but a multi-section Earlier work:[Witten; deBoer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi;...] Recent extensive efforts'14-'15: [Braun, Morrison; Morrison, Taylor; Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter; Anderson, Garcia-Etxebarria, Grimm; Braun, Grimm, Keitel; Mayrhofer, Palti, Till, Weigand; M.C.,Donagi,Klevers,Piragua,Poretschkin; Grimm, Pugh, Regalado]

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)

[Morrison, Taylor; Anderson, García-Etxebarria, Grimm, Keitel; Braun, Grimm, Keitel] connected via conifold transition

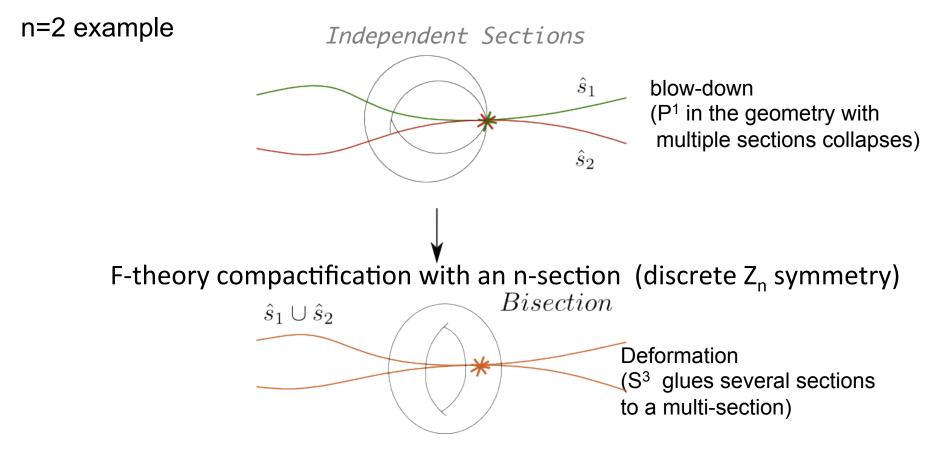
F-theory compactification with an n-section (discrete Z_n symmetry)

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)



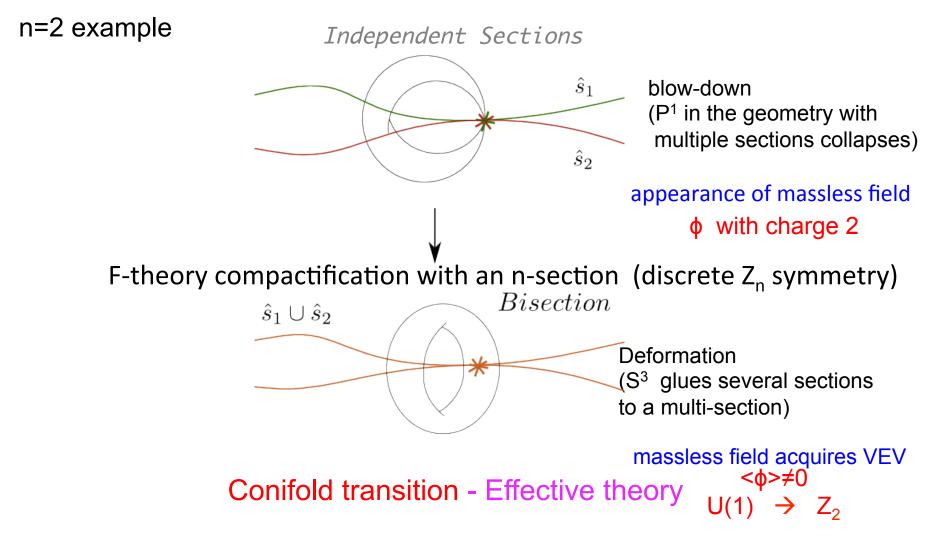
Torus fibration degenerates at co-dimension two loci →matter

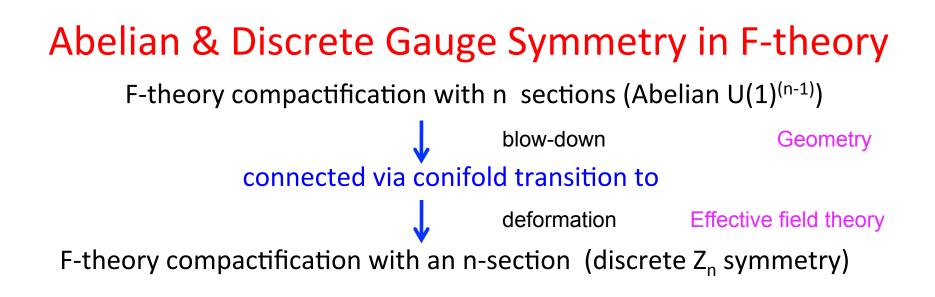
F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)



Conifold transition - Geometry

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)





Since Abelian symmetries better understood (c.f., recent works) most efforts focus on the geometry and spectrum of $U(1)^{(n-1)}$, to deduce, primarily via effective field theory, implications for Z_n .

- Z₂ [Anderson,Garcia-Etxebarria, Grimm; Braun,Grimm,Keitel; Mayrhofer, Palti, Till, Weigand]
- Z₃ [M.C.,Donagi,Klevers,Piragua,Poretschkin] 1502.06953

Geometries with n-section + Tate-Shafarevich Group Z_n No time

Summary and Outlook

- Highlights of F-theory Compactification Geometric perspective - discrete data: gauge symmetry; matter reps and multiplicity; Yukawa couplings
- Construction of Particle Physics Models SU(5) GUT's & first examples of three family Standard, Pati-Salam and Trinification models (tip of the iceberg)
- Conceptual developments: Abelian & Discrete Symmetries (related to MW & TS groups, respectively) highlight U(1)² & applications

Issues: continuous data such as coupling magnitudes,... moduli stabilization,...supersymmetry breaking,... Further study