FLAVOR Symmetries for Quarks and Leptons

Mu-Chun Chen, University of California - Irvine

UD2/NNN2015, Simons Center, Stony Brook University, Oct 29, 2015

Origin of Mass Hierarchy and Mixing

Smallness of neutrino mass:

$$
m_{v} \ll m_{e, u, d}
$$

Fermion mass and hierarchy problem $" \rightarrow$ Many free parameters in the Yukawa sector of SM

Flavor structure:

leptonic mixing

quark mixing

Origin of Mass Hierarchy and Mixing

- In the SM: 22 physical quantities which seem unrelated
- Question arises whether these quantities can be related
- No fundamental reason can be found in the framework of SM
- less ambitious aim \Rightarrow reduce the \# of parameters by imposing symmetries
- Grand Unified Gauge Symmetry
- seesaw mechanism naturally implemented
- GUT relates quarks and leptons: quarks \& leptons in same GUT multiplets
- one set of Yukawa coupling for a given GUT multiplet \Rightarrow intra-family relations
- Family Symmetry
- relate Yukawa couplings of different families
- inter-family relations \Rightarrow further reduce the number of parameters
\Rightarrow Experimentally testable correlations among physical observables

Origin of Flavor Mixing and Mass Hierarchy

- Several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry GF
- Family Symmetries G_{F} based on continuous groups:
- U(1)
- SU(2)
- SU(3)

GUT Symmetry SU(5), SO(I0), ...

- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T^{\prime} (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A5 (icosahedron, dodecahedron)
- Δ_{27}
- Q6

Tri-bimaximal Neutrino Mixing

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (March 2014)

- Latest Global Fit (3б) $\quad \sin ^{2} \theta_{23}=0.437(0.374-0.626) \quad\left[\theta^{l \mathrm{lep}} 23 \sim 41.2^{\circ}\right]$

$$
\begin{array}{cc}
\sin ^{2} \theta_{12}=0.308(0.259-0.359) & {\left[\theta^{\mathrm{le}}{ }_{12} \sim 33.7^{\circ}\right]} \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295) & {\left[\theta^{\mathrm{le}}, 13 \sim 8.80^{\circ}\right]}
\end{array}
$$

Also NuFit: Bergström, Gonzalez-Garcia, Maltoni,

- Tri-bimaximal Mixing Pattern

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{array}{lll}
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 & \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \\
\sin \theta_{13, \mathrm{TBM}}=0 .
\end{array}
$$

- Leading Order: TBM (from symmetry) + higher order corrections/contributions
- More importantly, corrections to the kinetic terms
- sizable in discrete symmetry models for leptons м.-С.С, м. Fallbacher, M. Ratz, C. Staudt (2012)

SU(5) Compatibility $\Rightarrow \mathrm{T}^{\prime}$ Family Symmetry

M.-C.C, K.T. Mahanthappa $(2007,2009)$

- Double Tetrahedral Group T': double covering of A4
- Symmetries $\Rightarrow 10$ parameters in Yukawa sector $\Rightarrow 22$ physical observables
- neutrino mixing angles from group theory (CG coefficients)
- TBM: misalignment of symmetry breaking patterns
- GUT symmetry \Rightarrow correlations among mixing parameters \Rightarrow deviation from TBM related to Cabibbo angle θ_{c}

$$
\begin{array}{|l|l|}
\hline \theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \longleftarrow & \begin{array}{c}
c G^{\prime} \text { of of } \\
s(5) \& T^{\prime}
\end{array} \\
\hline
\end{array}
$$

$$
\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta
$$

- large θ_{13} possible with one additional singlet flavon
M.-C. C., J. Huang, K.T. Mahanthappa, A. Wijiangco (2013)

Symmetry Relations

Quark Mixing			Lepton Mixing		
mixing parameters	best fit	30 range	mixing parameters	best fit	30 range
$\theta^{9}{ }_{23}$	$2.36{ }^{\circ}$	$2.25{ }^{\circ}-2.48^{\circ}$	$\theta^{\ominus}{ }_{23}$	41.2°	35.10-52.6 ${ }^{\circ}$
$\theta^{a}{ }_{12}$	$12.88{ }^{\circ}$	$12.75^{\circ}-13.01^{\circ}$	$\theta^{\ominus}{ }_{12}$	$33.6{ }^{\circ}$	$30.6{ }^{\circ}-36.8^{\circ}$
$\theta^{9}{ }_{13}$	0.21°	$0.17^{\circ}-0.25^{\circ}$	$\theta^{e}{ }_{13}$	$8.9{ }^{\circ}$	$7.5^{\circ}-10.2^{\circ}$

- QLC-I $\quad \theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ}$

Raidal, ‘04; Smirnov, Minakata, ‘04
(BM)

$$
\theta^{\mathrm{a}_{23}}+\theta^{\ominus} 23 \cong 45^{\circ} \text { slight inconsistent }
$$

- QLC-II $\quad \tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol, TBM }}+\left(\theta_{\mathrm{c}} / 2\right){ }^{*} \cos \delta_{e} \quad$ Ferrandis, Pakvasa; Dutta, Mimura; (TBM) $\theta^{e}{ }_{13} \cong \theta_{\mathrm{C}} / 3 \sqrt{ } 2$ Too small M.-C.C., Mahanthappa
- testing symmetry relations: a more robust way to distinguish different classes
of models

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices for quarks (and possibly) leptons

$$
\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\mathcal{e P}} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}
$$

- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
- CPV in quark and lepton sectors purely from complex CG coefficients

Group Theoretical Origin of CP Violation

Basic idea
 Discrete
 symmetry \mathbf{G}

- Scalar potential: if Z_{3} symmetric $\Rightarrow\left\langle\Delta_{1}\right\rangle=\left\langle\Delta_{2}\right\rangle=\left\langle\Delta_{3}\right\rangle \equiv\langle\Delta\rangle$ real
- Complex effective mass matrix: phases determined by group theory

CP Transformation

- Canonical CP transformation

$$
\begin{aligned}
& \phi(x) \stackrel{C \mathcal{P}}{\longmapsto} \eta_{C \mathcal{P}} \phi^{*}(\mathcal{P} x) \\
& \quad \text { freedom of re-phasing fields }
\end{aligned}
$$

- Generalized CP transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987); Grimus, Rebelo (1995)

Generalized CP Transformation

setting w/ discrete symmetry G
generalized CP transformation

G and CP transformations do not commute

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi i / 3}
$$

canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Rightarrow need generalized CP transformation $\widetilde{C P}: \phi \stackrel{\widetilde{C_{P}}}{\longmapsto} \phi^{*}$ as usual but

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \xrightarrow{\widetilde{C P}}\left(\begin{array}{l}
x_{1}^{*} \\
x_{3}^{*} \\
x_{2}^{*}
\end{array}\right) \quad \& \quad\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \xrightarrow{\widetilde{\widetilde{C P}}}\left(\begin{array}{l}
y_{1}^{*} \\
y_{3}^{*} \\
y_{2}^{*}
\end{array}\right)
$$

Group Theoretical Origin of CP Violation

complex CGs $\boldsymbol{i} \boldsymbol{\gamma}$ G and physical CP transformations do not commute

$$
\begin{aligned}
& \Phi(x) \stackrel{\widetilde{C_{P}}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x) \\
& \rho_{r_{i}}(u(g))=U_{r_{i}} \rho_{r_{i}}(g)^{*} U_{r_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
& u \text { has to be a class-inverting, } \\
& \quad \text { involuntory automorphism of } G \\
& \Rightarrow \text { such automorphism is NOT available } \\
& \quad \text { in certain groups } \\
& \Rightarrow \text { explicit physical CP violation in } \\
& \text { generic setting }
\end{aligned}
$$

examples: $\mathrm{T}_{7}, \Delta(27), \ldots$.

A Novel Origin of CP Violation

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

CP Violation from Group Theory!

- Possible connection between leptogenesis and CPV in neutrino oscillation

Example for a type I group:

$\Delta(27)$

- decay asymmetry in a toy model

- prediction of CP violating phase from group theory

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content

	fermions				
field	S	X	Y	Ψ	Σ
$\Delta(27)$	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{3}$	$\mathbf{3}$
$U(1)$	$q_{\Psi}-q_{\Sigma}$	$q_{\Psi}-q_{\Sigma}$	0	q_{Ψ}	q_{Σ}

- Interactions

$$
q_{\Psi}-q_{\Sigma} \neq 0
$$

$\mathscr{L}_{\text {toy }}=F^{i j} S \bar{\Psi}_{i} \Sigma_{j}+G^{i j} X \bar{\Psi}_{i} \Sigma_{j}+H_{\Psi}^{i j} Y \bar{\Psi}_{i} \Psi_{j}+H_{\Sigma}^{i j} Y \bar{\Sigma}_{i} \Sigma_{j}+$ h.c.

$$
\text { with } \omega
$$

"flavor" structures determined by (complex) CG coefficients

arbitrary coupling constants:
$\mathrm{f}, \mathrm{g}, \mathrm{h} \psi, \mathrm{h}_{\Sigma}$

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay $Y \rightarrow \bar{\Psi} \Psi$
interference of

with

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\begin{aligned}
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} & =\frac{\Gamma(Y \rightarrow \bar{\Psi} \Psi)-\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)}{\Gamma(Y \rightarrow \bar{\Psi} \Psi)+\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)} \\
& \propto \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[\operatorname{tr}\left(F^{\dagger} H_{\Psi} F H_{\Sigma}^{\dagger}\right)\right]+\operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\operatorname{tr}\left(G^{\dagger} H_{\Psi} G H_{\Sigma}^{\dagger}\right)\right] \\
& =|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right] . \\
& \bigwedge_{\text {one-loop integral } I_{S}=I\left(M_{S}, M_{Y}\right)}^{\text {one-loop integral } I_{X}=I\left(M_{X}, M_{Y}\right)}
\end{aligned}
$$

- properties of ε
- invariant under rephasing of fields
- independent of phases of f and g
- basis independent

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}=|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right]
$$

- cancellation requires delicate adjustment of relative phase $\varphi:=\arg \left(h_{\Psi} h_{\Sigma}^{*}\right)$
- for non-degenerate M_{S} and M_{X} : $\quad \operatorname{Im}\left[I_{S}\right] \neq \operatorname{Im}\left[I_{X}\right]$
- phase φ unstable under quantum corrections
- for $\operatorname{Im}\left[I_{S}\right]=\operatorname{Im}\left[I_{X}\right] \&|f|=|g|$
- phase φ stable under quantum corrections
- relations cannot be ensured by outer automorphism of $\Delta(27)$
- require symmetry larger than $\Delta(27)$

model based on $\Delta(27)$ violates CP!

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$
$\mathrm{U}(1)$	$2 q_{\Psi}$	0	$2 q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

$\Delta(27) \subset \operatorname{SG}(54,5):\left\{\begin{array}{lll}(X, Z) & : & \text { doublet } \\ \left(\Psi, \Sigma^{\mathcal{C}}\right) & : & \text { hexaplet } \\ \phi & : & \text { non-trivial 1-dim. representation }\end{array}\right.$
non-trivial $\langle\phi\rangle$ breaks $\operatorname{SG}(54,5) \rightarrow \Delta(27)$
allowed coupling leads to mass splitting $\mathscr{L}_{\text {toy }}^{\phi} \supset M^{2}\left(|X|^{2}+|Z|^{2}\right)+\left[\frac{\mu}{\sqrt{2}}\langle\phi\rangle\left(|X|^{2}-|Z|^{2}\right)+\right.$ h.c. $]$
\Rightarrow CP asymmetry with calculable phases
$\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} \propto|g|^{2}\left|h_{\Psi}\right|^{2} \operatorname{Im}[\omega]\left(\operatorname{Im}\left[I_{X}\right]-\operatorname{Im}\left\lfloor I_{Z}\right\rfloor\right)$
phase predicted by group theory

Group theoretical origin of CP violation!

M.-C.C., K.T. Mahanthappa (2009)

Discrete R Symmetries in MSSM

- Minimal Supersymmetric Standard Model:
- μ problem: why the parameter determining the Higgs mass << Planck scale?
- dim-5 proton decay operators
- simultaneous solution possible with (generation dependent) discrete R symmetries (Abelian or even non-Abelian!)
M.-C.C., M. Ratz, A. Trautner, JHEP 1309 (2013) 096
- Naturally small Dirac neutrino mass (no $\Delta \mathrm{L}=2$ violation) M.-C.C, M. Ratz, C. Staudt, P.
- $\Delta \mathrm{L}=4$ violation possible \Rightarrow neutrinoless quadruple beta decay
- Evading current constraints on (non-observation of) SUSY:
- R parity violation from discrete R symmetries \Leftrightarrow SUSY breaking
- No-Go Theorem: no R-symmetries in 4D GUTs M. Fallbacher, M. Ratz, P. Vaudrevange, PLB705 (2011) 503
- one way out \Rightarrow KK towers in extra dimensions M. W. Goodman, E. Witten, NPB 271 (1986) 21

A Giant Physicist and Human Being

Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Symmetries: can provide an understanding of the pattern of fermion masses and mixing
- Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
- Symmetries \Rightarrow Correlations, Correlations, Correlations!!!
- leading order sum rules between quark \& lepton mixing parameters
- among lepton flavor violating charged lepton decays
- among proton (nucleon) decays, neutron-antineutron oscillation
- corrections to kinetic terms need to be properly included
- Discrete R-symmetries:
- naturally light Dirac neutrinos
- suppressed nucleon decays and naturally small mu term

Summary

- Discrete Groups (of Type I) affords a Novel origin of CP violation:
- Complex CGs \Rightarrow Group Theoretical Origin of CP Violation
- NOT all outer automorphisms correspond to physical CP transformations
- Condition on automorphism for physical CP transformation

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A.Trautner, NPB (2014)

class inverting, involutory automorphisms

physical CP transformations

Backup Slides

An Example: Enhanced θ_{13} in A_{4}

Corresponding Change in θ_{12}

Corresponding Change in θ_{23}

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Constraints on generalized CP transformations

generalized CP transformation

$$
\Phi(x) \stackrel{\widetilde{C^{P}}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x)
$$

consistency condition

$$
\rho(u(g))=U_{\mathrm{CP}} \rho(g)^{*} U_{\mathrm{CP}}{ }^{\dagger} \quad \forall g \in G
$$

forther properties: м.-с.c., M. Fallbacher, K.T. Mahanthappa, м. Ratz, A. Trautner (2014)

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

- u has to be class-inverting
- in all known cases, u is equivalent to an automorphism of order two

bottom-line:

u has to be a class-inverting (involutory) automorphism of G

The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) u

$$
\begin{gather*}
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{\boldsymbol{i}}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
\text { unitary \& symmetric }
\end{gather*}
$$

- BDA vs. Clebsch-Gordan (CG) coefficients

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{i} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius-Schur indicator Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$
\begin{aligned}
& \mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)=\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
& \mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1 \quad \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 & \forall i, \\
\text { different from } u \text { is class-inverting and involutory, } & \text { otherwise. }\end{cases}
\end{aligned}
$$

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Examples

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

group	$\Sigma(72)$	$\left(\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{4}$
SG	$(72,41)$	$(144,120)$

CP Conservation vs Symmetry Enhancement

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
replace $S \sim \mathbf{1}_{0}$ by $Z \sim \mathbf{1}_{8} \curvearrowright$ interaction

$$
\mathscr{L}_{\text {toy }}^{Z}=g^{\prime}\left[Z_{\mathbf{1}_{8}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{4}}\right]_{\mathbf{1}_{0}}+\text { h.c. }=\left(G^{\prime}\right)^{i j} Z \bar{\Psi}_{i} \Sigma_{j}+\text { h.c. }
$$

$$
G^{\prime}=g^{\prime}\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
1 & 0 & 0 \\
0 & \omega & 0
\end{array}\right)
$$

and leads to new interference diagram

CP Conservation vs Symmetry Enhancement

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
replace $S \sim \mathbf{1}_{0}$ by $Z \sim \mathbf{1}_{8} \curvearrowright$ interaction

$$
\mathscr{L}_{\text {toy }}^{Z}=g^{\prime}\left[Z_{\mathbf{1}_{8}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{4}}\right]_{\mathbf{1}_{0}}+\text { h.c. }=\left(G^{\prime}\right)^{i j} Z \bar{\Psi}_{i} \Sigma_{j}+\text { h.c. }
$$

\Rightarrow different contribution to decay asymmetry: $\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}^{S} \rightarrow \varepsilon_{Y \rightarrow \bar{\Psi} \Psi}^{Z}$
total CP asymmetry of the Y decay vanishes if $\begin{cases}\text { (i) } & M_{Z}=M_{X} \\ \text { (ii) } & |g|=\left|g^{\prime}\right| \\ \text { (iii) } & \varphi=0\end{cases}$
relations (i)-(iii) can be due to an outer automorphism

Some Outer Automorphisms of $\Delta(27)$

- sample outer automorphisms of $\Delta(27)$

$$
\begin{aligned}
& u_{1}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{2}, \mathbf{1}_{4} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{7} \leftrightarrow \mathbf{1}_{8}, \mathbf{3} \rightarrow U_{u_{1}} \mathbf{3}^{*} \\
& u_{2}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{4}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{2}} \mathbf{3}^{*} \\
& u_{3}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{2} \mathbf{1}_{4}, \mathbf{1}_{5} \leftrightarrow \mathbf{1}_{7}, \mathbf{3} \rightarrow U_{u_{3}} \mathbf{3}^{*} \\
& u_{4}: \mathbf{1}_{\leftrightarrow} \leftrightarrow \mathbf{1}_{7}, \mathbf{1}_{4} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{4}} \mathbf{3}^{*} \\
& u_{5}: \mathbf{1}_{i} \leftrightarrow \mathbf{1}_{i}{ }^{*}, \mathbf{3} \rightarrow U_{u_{5}} \mathbf{3}
\end{aligned}
$$

- twisted Frobenius-Schur indicators

\boldsymbol{R}	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{2}$	$\mathbf{1}_{3}$	$\mathbf{1}_{4}$	$\mathbf{1}_{5}$	$\mathbf{1}_{6}$	$\mathbf{1}_{7}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\overline{\mathbf{3}}$
$\mathrm{FS}_{u_{1}}(\boldsymbol{R})$	1	1	1	0	0	0	0	0	0	1	1
$\mathrm{FS}_{u_{2}}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{3}}(\boldsymbol{R})$	1	0	0	0	0	1	0	1	0	1	1
$\mathrm{FS}_{u_{4}}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{5}}(\boldsymbol{R})$	1	1	1	1	1	1	1	1	1	0	0

- none of the u_{i} maps all representations to their conjugates
- however, it is possible to impose CP in (non-generic) models, where only a subset of representations are present, e.g. $\quad\left\{\boldsymbol{r}_{i}\right\} \subset\left\{\mathbf{1}_{0}, \mathbf{1}_{5}, \mathbf{1}_{7}, \mathbf{3}, \overline{\mathbf{3}}\right\}$
- CP conservation possible in non-generic models
- e.g. some well-known multiple Higgs model Branco, Gerard, and Grimus (1984)

CP-like Symmetries

outer automorphism u_{5}

$$
X \rightarrow X^{*}, \quad Z \rightarrow Z^{*}, \quad Y \rightarrow Y^{*}, \quad \Psi \rightarrow U_{u_{5}} \Sigma \& \Sigma \rightarrow U_{u_{5}} \Psi
$$

$$
U_{u_{5}}=\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
0 & 1 & 0 \\
\omega & 0 & 0
\end{array}\right)
$$

does not lead to a vanishing decay asymmetry
\Rightarrow in general, imposing an outer automorphism as a symmetry does not lead to physical CP conservation!
\Leftrightarrow CP-like symmetry

Summary

Three examples:
Type I group: $\Delta(27)$

- generic settings based on $\Delta(27)$ violate CP!
- spontaneous breaking of type II A group $\operatorname{SG}(54,5) \rightarrow \Delta(27)$ \curvearrowright prediction of CP violating phase from group theory!

Type II A group: T'

- CP basis exists but has certain shortcomings
- advantageous to work in a different basis \& impose generalized CP transformation
- CP constrains phases of coupling coefficients

Type II B group: $\Sigma(72)$

- absence of CP basis but generalized CP transformation ensures physical CP conservation
- CP forbids couplings

