

Hyper-K Strategy for Controlling Systematic Uncertainties

Sam Short for the Hyper-K Collaboration

NNN15 29 October 2015

Outline

- An Introduction to Hyper-K
- Flux uncertainties
- Interaction model uncertainties
- Near and intermediate detectors

Hyper Kamiokande

Hyper Kamiokande

• ~1 mega tonne total mass (0.52 Mt fiducial mass)

Electrical Machinery Room

Width 48m

Compart ment

- 295 km and 2.5° off-axis from J-PARC neutrino beam
- Segmented design
- 99,000 (20inch) PMTs

Access Tunnel

20% photo-coverage

29 October 2015

CROSS SECTION

Water Purificatiom System

Cavity (Lining)

Total Length 247.5m (&Compartments)

29 October 2015

$T_{\text{okai}}2H_{\text{yper}}K_{\text{amiokande}}$

Sources of Systematic Uncertainty

Far Detector Response

Neutrino Flux Prediction

Data driven flux model:

- Proton beam monitor measurements
- Horn field measurements
- Beam-line component alignment measurements
- NA61/SHINE hadron production measurements

Neutrino Flux Uncertainty

29 October 2015

Δ

 E_{v} (GeV)

Uncertainties considered:

- Hadron interactions
- Proton beam profile and off-axis angle
- Horn current and field
- Horn and target alignment
- Material modelling
- Proton number

Near/Far Flux Uncertainty

- At 280m: source is not point-like → near/far ratio not flat
- At 1km, 2km: ratio is flatter → better cancellation of flux uncertainties
- Uncertainty <0.5% for intermediate (1km and 2km) detectors
- Uncertainty <1% around peak region (0.6GeV) for 280m detector (T2K ND280)

Sam Short

Wrong Sign Background^K

• In antineutrino mode neutrinos contribute 20% to the event rate

Table 7. The expected number of v_e candidate events. Normal mass hierarchy with $\sin^2 2\theta_{13} = 0.1$ and $\delta_{CP} = 0$ are assumed. Background (BG) is categorized by the flavor before oscillation.

 <10% normalisation uncertainty is necessary to have negligible impact on CP-Violation sensitivity

Sam Short

29 October 2015

Intrinsic v_e Background

- Intrinsic beam ν_e contributes ~15–20% to the event rate

Table 7. The expected number of v_e candidate events. Normal mass hierarchy with $\sin^2 2\theta_{13} = 0.1$ and $\delta_{CP} = 0$ are assumed. Background (BG) is categorized by the flavor before oscillation.

	Signal		BG						
	$\overline{\nu_{\mu} ightarrow \nu_{e}}$	$\overline{\nu}_{\mu} \to \overline{\nu}_{e}$	v_{μ} CC	$\overline{\nu}_{\mu}$ CC	v _e CC	$\overline{\nu}_e$ CC	NC	BG total	Total
$\overline{\nu}$ mode $\overline{\nu}$ mode	3016	28 2110	11	0	503 222	20 396	172 265	706 891	3750 3397
V moue	390	2110	-	5	LLL	390	205	091	5591

 <5% normalisation uncertainty is necessary to have negligible impact on CP-Violation sensitivity

Achieved with intermediate water Cherenkov detector

 ν_l

Neutrino Interactions

 ν_l

Interaction Model Uncertainties

Use T2K approach:

- Data driven: External neutrino, electron and pion scattering data
- Uncertainties: Modelled by varying the underlying model parameters and ad-hoc parameters
- Fit to near detector data to constrain flux and interaction model uncertainties to ~3%

Source of uncertainty	$\nu_{\mu} \ { m CC}$	$\nu_e ~ \mathrm{CC}$			
Flux and common cross sections					
(w/o ND280 constraint)	21.7%	26.0%			
(w ND280 constraint)	2.7%	3.2%			
Independent cross sections	5.0%	4.7%			
SK	4.0%	2.7%			
FSI+SI(+PN)	3.0%	2.5%			
Total					
(w/o ND280 constraint)	23.5%	26.8%			
(w ND280 constraint)	7.7%	6.8%			

Phys. Rev. D 91, 072010 (2015)

v_e/\overline{v}_e Cross-Sections

- Measure $\nu_{\mu}\text{, }\overline{\nu}_{\mu}$ rates in near detectors
- To predict $\nu_e,\,\overline{\nu}_e$ rates at far detector need to correct for cross-section difference
- Problem: no precision measurements of $\nu_e, \ \overline{\nu}_e$ cross-sections at energies of interest
- Sensitivity study: assign $\nu_e,\,\overline{\nu}_e$ cross-sections uncorrected normalisation systematic parameters
- Need: <1-2% uncertainty to minimise impact on CP-Violation discovery sensitivity

Sam Short

2 m

 \leftarrow

7 m

22 m

29 October 2015

17

Sam Short

T2K Near Detector Suite

Off-Axis: ND280

- Characterises beam before neutrino oscillations
- Targets: water, carbon, lead and argon
- Measures neutrino crosssections

Potential T2K Near Detector Upgrades

Inside UA1 magnet:

- FGD2: $H_20 \rightarrow D_20$ Neutrino interaction properties on quasi-free neutron in deuterium (via subtraction with data taken with H_20)
- Using water-based liquid scintillator
 Detailed reconstruction of hadronic system
- **High pressure TPC (He, Ne, Ar)** Study A-dependence of cross-sections and final state interactions

Outside UA1 magnet:

 Scintillating tracking detector with water and plastic targets surrounded by range detectors
 Measure muon momentum over large range of angles and water/CH cross-sections

Hyper-K Intermediate

- Experimental method to remove uncertainties of neutrino interactions from oscillation analyses
- Covers 1-4° off-axis angle range
- Initial design: inner detector moves up and down in water filled pit
- Linear combinations reproduce and predict muon kinematic distributions for the oscillated flux

NuPRISM Studies

29 October 2015

Hyper-K Intermediate

- 4π coverage → mimic coverage at far detector
- Full magnetised downstream MRD:
 - Forward scattering muons (momentum < 2GeV) used in oscillation fits
 - Constrain "wrong-sign" components11 m
- Small magnetised side MRD:

2 m

7 m

22 m

o_{CP} [radians]

0.2

0.4

0

0.8

HK only

0.6

0.06Ē

-0.8 -0.6 -0.4 -0.2

0.05

TITUS Sensitivit

Summary

- Hyper Kamiokande will study: nucleon decay and solar, atmospheric, accelerator and supernova neutrino physics
- Require systematic uncertainties to be at the few % level
- Studies ongoing to determine largest sources of systematic errors:
 - Flux uncertainties (data driven measurements)
 - Wrong sign backgrounds (magnetised near detector)
 - Beam contamination (water Cherenkov intermediate detector)
 - Model and ($\nu_e,\ \overline{\nu}_e)$ cross-section uncertainties (data driven measurements)

Thanks for listening

Hyper-K Strategy for Controlling Systematic Uncertainties

Sam Short for the Hyper-K Collaboration

> NNN15 29 October 2015

References

- "Physics Potential of a Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande" published in PTEP (May 2015) arXiv:1502.05199 [hep-ex]
- "A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande" arXiv:1412.4673v2 [physics.ins-det]
- "Letter of Intent: The Hyper-Kamiokande Experiment", arXiv:1109.3262v1 [hep-ex]

Tokai 2Kamioka Experiment

J-PARC Beamline

T2K On-Axis Near Detector: INGRID

Interactive Neutrino GRID:

- 280m from target on beam axis
- 16 iron/scintillator module
- 1 scintillator tracking module
- Monitors beam centre, profile and neutrino flux

T2K Off-Axis Near Detector: ND280

Expected Sensitivities

Physics target	Sensitivity	Conditions		
Neutrino study w/ J-PARC v		$7.5 \mathrm{MW} \times 10^7 \mathrm{s}$		
- <i>CP</i> phase precision	<19°	(a) $\sin^2 2\theta_{13} = 0.1$, mass hierarchy known		
-CPV discovery coverage	76% (3 σ), 58% (5 σ)	(a) $\sin^2 2\theta_{13} = 0.1$, mass hierarchy known		
$-\sin^2\theta_{23}$	± 0.015	$1 \sigma @ \sin^2 \theta_{23} = 0.5$		
Atmospheric neutrino study		10 yr observation		
- MH determination	$>3\sigma$ CL	(<i>a</i>) $\sin^2 \theta_{23} > 0.4$		
$-\theta_{23}$ octant determination	$>3\sigma$ CL	(a) $\sin^2 \theta_{23} < 0.46$ or $\sin^2 \theta_{23} > 0.56$		
Nucleon decay searches		10 yr data		
$-p \rightarrow e^+ + \pi^0$	1.3×10^{35} yr (90% CL UL)	-		
	5.7×10^{34} yr (3 σ discovery)			
$- p \rightarrow \bar{\nu} + K^+$	$3.2 \times 10^{34} \text{yr} (90\% \text{CL UL})$			
	1.2×10^{34} yr (3 σ discovery)			
Astrophysical neutrino sources				
$-$ ⁸ B ν from Sun	200 v/day	7.0 MeV threshold (total energy) w/ osc.		
 Supernova burst ν 	170 000–260 000 v	@ Galactic center (10 kpc)		
	30–50 v	@ M31 (Andromeda galaxy)		
 Supernova relic v 	830 v/10 yr			
- WIMP annihilation at Sun		5 yr observation		
(σ_{SD} : WIMP–proton spin-	$\sigma_{SD} = 10^{-39} \mathrm{cm}^2$	(a) $M_{\text{WIMP}} = 10 \text{GeV}, \chi\chi \rightarrow$		
dependent cross section)		$b\bar{b}$ dominant		
	$\sigma_{SD} = 10^{-40} \mathrm{cm}^2$	@ $M_{\text{WIMP}} = 100 \text{ GeV}, \chi \chi →$ W^+W^- dominant		

Errors for Appearance and Disappearance Analyses

Fig. 15. Fractional error size for the appearance (left) and disappearance (right) samples in the neutrino mode. Black: total uncertainty, red: flux and cross section constrained by the near detector, magenta: near-detector non-constrained cross section, blue: far-detector error.

Fig. 16. Fractional error size for the appearance (left) and disappearance (right) samples in the anti-neutrino mode. Black: total uncertainty, red: flux and cross section constrained by the near detector, magenta: near-detector non-constrained cross section, blue: far-detector error.

33

Hyper-K Uncertainties

Uncertainties (in %) for the expected number of events at Hyper-K from the systematic uncertainties assumed in this study. ND: near detector.

		Flux & ND-constrained cross section	ND-independent cross section	Far detector	Total
v mode	Appearance	3.0	1.2	0.7	3.3
	Disappearance	2.8	1.5	1.0	3.3
\overline{v} mode	Appearance	5.6	2.0	1.7	6.2
	Disappearance	4.2	1.4	1.1	4.5

Expected Sensitivity to CP-Violation

Fig. 18. The 90% CL allowed regions in the $\sin^2 2\theta_{13} - \delta_{CP}$ plane. The results for the true values of $\delta_{CP} = (-90^\circ, 0, 90^\circ, 180^\circ)$ are overlaid. Top: normal hierarchy case. Bottom: inverted hierarchy case. Red (blue) lines show the result with Hyper-K only (with a $\sin^2 2\theta_{13}$ constraint from reactor experiments).

Excluding DeltaCP = 0

Fig. 19. Expected significance to exclude $\sin \delta_{CP} = 0$. Top: normal hierarchy case. Bottom: inverted hierarchy case.

29 October 2015

Atmospheric Sensitivities

Fig. 25. Atmospheric neutrino sensitivities for a 10 yr exposure of Hyper-K assuming that the mass hierarchy is normal. Top: the $\Delta \chi^2$ discrimination of the wrong hierarchy hypothesis as a function of the assumed true value of $\sin^2\theta_{23}$. Bottom: the discrimination between the wrong octant for each value of $\sin^2\theta_{23}$. The uncertainty from δ_{CP} is represented by the thickness of the band. Vertical dashed lines indicate 90% confidence intervals of $\sin^2\theta_{23}$ from the T2K measurement in 2014 [38].

29 October 2015