NOVA STRATEGY FOR CONTROLLING SYSTEMATICS

.....

....

A. Sousa for P. Vahle, NNN15, Oct. 29, 2015

The NOvA Experiment

Two detector, long-baseline neutrino oscillation experiment

Michigan

Ino

FERMILAB

Wisconsin

Illinois

NOvA Site

University of Minnesota

Minnesot

lowa

Missouri

Off-axis neutrinos from NuMI beam

 \Box L/E~400 km/GeV,

atmospheric Δm^2

- Physics goals:
 - Search for $v_{\mu} \rightarrow v_{e}$ transitions (with both neutrinos and antineutrinos)
 - determine mass hierarchy
 - constrain CP violating phase
 - precision measurements of

 Δm^2 , θ_{23} from v_{μ} disappearance

Making a Neutrino Beam

The NOvA Detectors

3 901

3.90r

0000000000 PORE AIRLINES

Designed for electron ID

• Fine segmentation

• Low-Z, 65% active

• ND: 300 ton,1 km from source

• FD: 14 kton, 810 km from source

P. Vahle, NNN 2015

15.60r

15.60m

Detector Technology

PVC extrusion + Liquid Scintillator
 mineral oil + 5% pseudocumene

6

- Read out via WLS fiber to APD
 FD has 344,064 channels
 muon crossing far end~25 PE
- Layered planes of orthogonal views

Plane of vertical cells

Plane of horizontal cells

 \sim 7 samples per X₀

3.87 cm

Scintillator cell with looped WLS Fiber

15.6m

3.9cn

PVC Extrusion

Combining 2 functionally identical detectors with an off-axis beam mitigates many of the dominant errors associated with accelerator neutrino experiments

Hadron production uncertainty in the neutrino target and beam line focusing errors cause +/-20%changes in normalization, but peak energy shifts by less than 1.5%.

MIPP hadron production data and MINERvA flux measurement promise to reduce normalization uncertainty by more than a factor of 2.

NO_vA Preliminary

P. Vahle, NNN 2015

Systematic Control

8

Combining 2 functionally identical detectors with an off-axis beam mitigates many of the dominant errors associated with accelerator neutrino experiments

Combining 2 functionally identical detectors with an off-axis beam mitigates many of the dominant errors associated with accelerator neutrino experiments

Neutrino interaction uncertainties also cancel in the extrapolation, leaving a residual 3.5% change in number of events

Largest contributions from modifying axial mass in QE and RES cross section parameterization

ND beam peak moves by less than 1%

Interaction uncertainties from Genie Users Manual, arXiv:1510.05494

Which Systematics do matter?

1	7	1	٦	١
				J

Source	$\delta(\sin^2 \theta_{23}) \ (\pm\%)$	$\delta(\Delta m^2)$ (±%)
Absolute Calorimetric Energy Calibration [±22%]	7.7	3.1
Relative Calorimetric Energy Calibration [±5.4%]	3.7	0.8
Cross Sections and FSI [±(15-25)%]	0.6	0.7
NC and CC Backgrounds	3.2	0.7
Detector Response	1.3	0.7
Flux [±21%]	1.6	0.4
Exposure [<±2%]	0.3	0.2
Oscillation Parameters	2.1	2.2
Total Systematic	9.2	4.1
Statistical	19	5.0

- Errors on mass splitting and mixing angle dominated by hadronic energy calibration/simulation
- NC backgrounds contribute to mixing angle systematic uncertainty

Hadronic Energy Systematic

 $E_v = E_\mu + E_{had}$

- While the muon simulation matches data, the simulated hadronic system has 21% more energy than in data.
- The hadronic energy scale is recalibrated so the total energy peak of the data matches the MC.
 - Correction taken as a systematic on the absolute energy scale
 - This results in 6% overall neutrino energy scale uncertainty.

Hadronic Energy Systematic

- Additionally implies a detector-to-detector relative energy systematic
- □ Assume different models to correct E_{had}

- Allow energy scale and normalization of each process type (QE/ RES/DIS) to vary
- 2% difference in hadronic energy scale between two correction methods used as systematic

Mitigating the E_{had} Systematic

- □ First analyses have the luxury of conservative systematics
- Need to understand the source of the discrepancy for future analyses
 - Calibration vs. detector response vs. Neutrino interaction modeling

 v_{μ} Tracker $\rightarrow \mu^{-} N \pi^{\pm} X$ (W < 1.8 GeV)

Data

MINERVA Preliminarv

- External data provide some hints
 - Missing 2p2h in Genie

Which systematics do matter?

- Nue Systematics assessed by modifying the simulation used in the extrapolation
- Variation in the BG and signal prediction taken as the size of the systematic

4

With ~ 1 BG event and ~ 6 signal events expected, signal systematics are most important.

Signal systematics dominated by neutrino interaction uncertainties, detector response modeling, energy calibration.

*will be larger in published version

Neutrino Interaction Modeling

- Signal selection efficiency not benchmarked in ND
- Selection efficiency changes for each process type
 QE selection efficiency is 2x RES selection efficiency, which is 2x DIS selection efficiency
- Uncertainties in relative components implies uncertainty in signal selection efficiency

P. Vahle, NNN 2015

Muon Removal—Electron Addition

16

We can study our signal efficiency in hybrid ND events

- Remove the hits associated with a muon track in selected numu CC event
- Insert a simulated electron with the same kinematics as the removed muon
- Reconstruct the hybrid event

Comparing distributions between data and MC will help constrain the selection efficiency of electron neutrino events

Understanding ND/FD acceptance effects still ongoing

- Off-axis beam and functionally identical detectors mitigate many of the larger errors associated with accelerator neutrino experiments
- NOvA adopted conservative estimates of systematic uncertainties in our first analysis
- Future analyses will benefit from new external data on neutrino interactions and internal data-driven constraints.

Simulation

- 20
- Beam hadron production, propagation; neutrino flux: FLUKA/FLUGG
- Cosmic ray flux: CRY
- Neutrino interactions and FSI modeling: GENIE
- Detector simulation: GEANT4
- Readout electronics and DAQ: Custom simulation routines

NOvA Simulation

P. Vahle, NNN 2015

Calibration

- Calibration achieved using cosmic rays
- Light levels drop by a factor of 8 across a FD cell
- Stopping muons
 provide a standard
 candle

P. Vahle, NNN 2015

NOvA Preliminary

Energy Scale

Near Detector

- **cosmic** μ dE/dx [~vertical]
- beam μ dE/dx [~horizontal]
- Michel e⁻ spectrum
- π^0 mass п.
- hadronic shower E-per-hit
- **Far Detector**
 - **cosmic** μ dE/dx [~vertical]
 - beam μ dE/dx [~horizontal]
 - Michel e⁻ spectrum
- All agree to 5%

Reconstruction

Vertexing: Find lines of energy depositions w/ Hough transform CC events: 11 cm resolution

<u>**Tracking:**</u> Trace particle trajectories with **Kalman filter** tracker (below). Also have a **cosmic ray tracker**: lightweight, very fast, and useful for large calibration samples and online monitoring tools.

Selecting Muon Neutrinos

- Goal: Isolate a pure sample of 10^{7} v_{μ} CC events less than 5GeV 10⁶ 10^t Select events with long tracks Events Suppress NC and cosmic backgrounds 10 Containment cuts require a buffer 10² 10 between walls and event 10⁻¹ □ 4-variable kNN used to identify 0.2 10 muons 10⁶ track length 10⁵ \Box dE/dx along track Events 10⁴ scattering along track 10³ track-only plane fraction 10² ND Data matches simulation well
 - ND Data matches simulation for muon variables

Energy Estimation

 $E_v = E_\mu + E_{had}$

- While the muon simulation matches data, the simulated hadronic system has 21% more energy than in data.
- The hadronic energy scale is recalibrated so the total energy peak of the data matches the MC.
 - Correction taken as a systematic on the absolute energy scale
 - This results in 6% overall neutrino energy scale uncertainty.
- ND reconstructed energy distribution is used to produce a data driven prediction of the FD spectrum

P. Vahle, NNN 2015

Selecting Electron Neutrinos

- Goal: Isolate a pure sample of v_eCC events
 - Select events with electromagnetic showers
 - Suppress backgrounds from
 NC/v_µCC/beam v_e and cosmic events
 - Basic cuts to remove obvious backgrounds:
 - Fiducial and Containment
 - **D** Reconstructed p_T/p
 - remove very vertical events
 - Shower length
 - Number of hits
 - Calorimetric energy

Selecting Electron Neutrinos

LID:

 Compare dE/dx in transverse and longitudnal slices to simulated
 e/µ/pi/p⁺ distributions

27

LEM:

Pattern of energy deposition of entire event compared to a simulated event library

Background characteristics

28

 Both selection techniques achieve good sensitivity to v_e appearance

35% signal selection efficiency

(wrt containment)

- Reject 99.7% of NC backgrounds
- better than 1 in 10⁸ cosmic rejection
- 62% expected overlap of the signal

 Selected BG dominated by beam ν_e and NC DIS events
 Most NC events have an energetic π⁰

Before unblinding, we chose the more traditional LID as the primary selector

P. Vahle, NNN 2015

Signal Prediction

- \square Signal predictions based on ND $v_{\mu}\text{CC}$ energy spectrum
- No direct benchmark of simulation of signal events
- Independent EM samples show good data/MC agreement

P. Vahle, NNN 2015

Flux Errors

- Full beam geometry simulated with Fluka(11.2c.0) and Flugg(2009_3)
- Hadron production errors come from comparison of NA49 thin target data with Simulation
- Focusing and beam line errors include
 - Horn current miscalibration
 - Horn position/misalignment
 - Current distribution
 - Beam position on target
 - Proton beam spot size
 - Target position

P. Vahle, NNN 2015

Detector Response Modeling

• Detailed modeling includes:

- fiber attenuation
- light collection losses at cell ends
- scintillator saturation
- fiber length variation across modules
- run-by-run matching of inactive channels
- APD characteristics
- amplifier noise
- full digitized traces
- readout electronics noise
- signal shaping, digitization, zero suppression

Our Data require more scintillator saturation in simulation for high dE/dx hits than usual. Tune model to proton tracks.

