vPRISM:

An Experimental Method to Remove Neutrino Interaction Uncertainties from Oscillation Experiments

> Mike Wilking Stony Brook University NNN 2015 October 29th, 2015

vPRISM:

-ement

An Experimental Method to Remove Neutrino Interaction Uncertainties from Oscillation Experiments

> Mike Wilking Stony Brook University NNN 2015 October 29th, 2015

What is NuPRISM?

- NuPRISM is a near detector that spans a wide angular range (~1°-4°) off-axis from the neutrino beam direction
- This type of detector can perform a wide variety of interesting neutrino physics measurements
 - 1. NuPRISM can greatly **reduce neutrino interaction uncertainties** in T2K/Hyper-K/DUNE/...
 - These will be the largest uncertainties for the full T2K dataset (even more problematic for T2K2/HK/DUNE)
 - 2. NuPRISM can perform a high precision search for sterile neutrino oscillations
 - 3. NuPRISM can determine neutrino interaction final states from mono-energetic neutrino beams
 - Electron-scattering-like measurements are now possible
 - Very interesting probe for nuclear physics, and to constrain the relationship between neutrino energy and observable lepton kinematics

Measuring E_v

Must assume mass of recoiling hadron(s)

Problematic! due to Multi-nucleon interactions

Martini et al. arXiv:1211.1523

Lepton + Hadronic Energy:

Energy loss is worse at lower E_v

Different for v and anti-v

- Both effects lead to underestimating the neutrino energy (feed down)
- Need to calibrate both leptonic (e & µ) & hadronic energy scales and energy tails (variance)

GEANT4 Simulation of a large LAr volume

(True deposited hadronic energy)/ (True initial hadronic energy)

Measuring E_v

Martini et al. arXiv:1211.1523

 Need to calibrate both leptonic (e & μ) & hadronic energy scales and energy tails (variance)

Current State of Multinucleon Interaction Modeling

- The two most commonly used multinucleon models can be compared
 - J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, PRC 83:045501 (2011)
 - M. Martini, M. Ericson, G. Chanfray, and J. Marteau, PRC 80:065501 (2009)
- Cross section difference
 over a large range
- A theoretical desc nucleus interactic
 - Will we ever be models to the r
 - A direct constr

Constraints from Typical Near Detectors

- Shouldn't cross section systematics cancel in a near/far fit?
 - Some errors, like total normalization, will cancel
- However, multi-nucleon effect causes feed-down of events into oscillation dip
 - Cannot disentangle with near detectors
 - Energy spectrum is not oscillated
- More multi-nucleon = smaller dip
 - Multi-nucleon effects are largely degenerate with mixing angle effect!

Mixing Angle Bias!

Effect on T2K v_{μ} Disappearance

- Create "fake data" samples with flux and cross section variations
 - With and without multi-nucleon events
- For each fake data set, full T2K near/far oscillation fit is performed
 - For each variation, plot difference with and without multi-nucleon events
- For Nieves model, "average bias" (RMS) = 3.6%
- For Martini model, mean bias = -2.9%, RMS = 3.2%
 - Full systematic = $\sqrt{(2.9\%^2 + 3.2\%^2)} = 4.3\%$
 - This is expected to be one of the largest systematic uncertainties for the full T2K run
- But this is just a comparison of 2 models
 - How much larger could the actual systematic uncertainty be?
- A data-driven constraint is needed

Can the E_v problem be solved experimentally?

2. Beam

Take linear combinations!

N.Beam

8

Benefits of a Monoenergetic Beam

• Fully specified initial state!

- Electron-scattering-like measurements with neutrinos!
- First ever measurements of $\sigma^{\text{NC}}(\mathbf{E}_{v})$
 - Much better constraints on NC oscillation backgrounds
- First ever "correct" measurements of $\sigma^{CC}(\mathbf{E}_v)$
 - No longer rely on final state particles to determine E_v
- It is now possible to separate the various components of single-µ events!

Take different linear combinations!

Take different linear combinations!

Take different linear combinations!

2.Beath

vPRISM Analysis

• Fake data studies show the bias in θ_{13} is reduced from 4.3%/3.6% to 1.2%/1.0%

- Fake data studies show the bias in θ_{13} is reduced from 4.3%/3.6% to 1.2%/1.0%
- More importantly, this is now based on a **data constraint**, rather than a model-based guess

- Fake data studies show the bias in θ_{13} is reduced from 4.3%/3.6% to 1.2%/1.0%
- More importantly, this is now based on a **data constraint**, rather than a model-based guess
- Expect the NuPRISM constraints to get significantly better as additional constraints are implemented (very conservative errors)

More Physics!

NuPRISM can do more than just improve long-baseline measurements

Sterile Neutrinos

•

- A multi-kton detector, ~1 km from a 600 MeV neutrino beam is well suited to confirm or refute the MiniBooNE/LSND event excesses
- NuPRISM has the additional benefit of continuously sampling a variety of L/E values
 - Oscillation signal and backgrounds vary differently vs off-axis angle
 - This provides an additional handle on many uncertain backgrounds (e.g. NC single-photon production)

Sterile Neutrino Analysis

- To compute first sensitivities, make several conservative assumptions
- No constraint from the existing near detector (ND280)
 - Eventually, a powerful 2-detector constraint will be incorporated
- No constraints on background processes
 - NuPRISM should provide control samples for all of the major backgrounds to impose strong data-driven constraints
- Assume Super-K detector efficiencies and resolutions
 - NuPRISM has smaller phototubes, and should perform better closer to the wall (which is important, since the diameter is much smaller)
 - Significant increase in v_e statistics is expected
- Since this analysis is still statistics limited, any additional running (T2K2 and/or Hyper-K) will improve the sensitivity

Current Sterile-v Sensitivities

Constraining δ_{CP}

- The strong constraints on v_{μ} interactions provided by NuPRISM will provide a lot of information about nuclear effects in v_e interactions
- However, there may still be some differences between v_e and v_μ cross sections (e.g. 2nd class currents?)
- How do we constrain v_e events?
 - Intrinsic v_e in beam
 - Requires a large detector with the same nucleus and acceptance as the far detector
 - NuPRISM!
 - Otherwise, we may have to build **NuSTORM**

Need to measure: $\sigma(v_{\mu})/\sigma(v_{\mu})$ $\sigma(v_{e})/\sigma(v_{\mu})$ $\sigma(v_{e})/\sigma(v_{\mu})$

NuPRISM v_e Appearance (CPV) 2 step approach: Step 1: Measure Super-K ve response Step 2: Measure **nuPRISM** v_e response with nuPRISM v_{μ} with nuPRISM ν_{μ} (in 8000 Normal States) (in 80 vPRISM v_e (2.5-4.0°) SK Beam+Osc. ve vPRISM v_{μ} Linear Combo. vPRISM v_{μ} Linear Combo. If $\sigma(v_e)/\sigma(v_\mu)=1$ High-E is above 5000 3000 muon acceptance this fit is all 2000 Measure that is needed 1000E $\sigma(v_e)/\sigma(v_\mu)$

0

1.5

2.5

 E_{v} (GeV)

2

Step 1 is the ν_e version of the ν_μ disappearance analysis

2

• Step 2 uses only nuPRISM to measure $\sigma(v_e)/\sigma(v_\mu)$

1.5

0.5

 \bigcirc

• High energy disagreement is above muon acceptance

2.5

 E_{v} (GeV)

• Need large mass near detector to make a few percent measurement of $\sigma(v_e)/\sigma(v_\mu)$ (ND280 target is a few ton, NuPRISM target is a few kton)

Constraining the v_e Cross Section

- Water Cherenkov detectors can achieve high v_e purities
 - In T2K, 3.50 intrinsic v_e events vs 0.96 NC events
 → 77% v_e purity
- Studies to optimize PMT size/granularity to maximize ν_e purity in NuPRISM are ongoing
- NuPRISM can also make use of higher off-axis angles:

50% increase in v_e fraction from 2.5° to 4.0° off-axis

Off-axis angle (°)	ve Flux 0.3-0.9 GeV	vµ Flux 0.3-5.0 GeV	Ratio ve/vµ
2.5	1.24E+15	2.46E+17	0.507%
3.0	1.14E+15	1.90E+17	0.600%
3.5	1.00E+15	1.47E+17	0.679%
4.0	8.65E+14	1.14E+17	0.760%

ve Cross Section Precision

- For 10²² POT, expect **9340** v_e single-e (i.e. CCQE-like) interactions
 - 2.5° 4.0° range
 - $0.3 < E_v < 0.9 \text{ MeV}$
 - 2 m fiducial volume
- Assuming Super-K efficiency, this would provide a 1.3% statistical error on $N_{\nu e}/N_{\nu \mu}$
 - Backgrounds will dilute the sensitivity, but NuPRISM can make very precise in-situ measurements of the backgrounds
- v_e/v_µ flux uncertainty is 3.2% (5.2%) in the 300-600 (600-900) MeV range
 - If hadron production uncertainties are reduced by half, v_e/v_μ flux uncertainty is reduced to 1.7% (3.4%)
- 3% uncertainty may be achievable
 - In addition, NuPRISM v_e/v_μ flux matching technique provides a unique measurement of $(d^2\sigma_{ve}/dpd\theta) / (d^2\sigma_{v\mu}/dpd\theta)$

v Cross Section Measurements

- T2K v_{μ} disappearance is subject to large NC π^+ uncertainties
 - 1 existing measurement
 - vPRISM can place a strong constraint on this process vs E_{ν}
- NuPRISM is an ideal setup to measure proton decay backgrop
 - Repeat p→e⁺π⁰ background measurement from K2K 1 k detector
 - 50% of the p→K⁺v backgrou is from v-induced K+ produced
 - Production rate has larg uncertainties
- Hyper-K proton decay measurements are background limited, so these measurements are crucial

DUNE-PRISM

- NuPRISM technique also works for DUNE (or NuSTORM)
 - Main drawback: on-axis flux limits high- E_v reach
 - Can only make mono-energetic beams up to the first osc. max (~2.5 GeV)
 - However, 2nd oscillation maximum can be very well constrained

Summary

- We are entering an era where the largest uncertainties in neutrino oscillation experiments will be determined by poorly understood models
 - NuPRISM provides an **experimental solution** to the **neutrino energy measurement problem**
- NuPRISM will produce a wide variety of other interesting measurements
 - A unique **sterile neutrino** search
 - Nuclear physics from mono-energetic beams
 - A wide variety of **unique cross section measurements** and model constraints
- These physics goals can be achieve within the currently allocated beam time for T2K
 - Plans for an extended run will enhance sensitivity for sterile neutrinos and $\sigma(v_e)$ measurements
- The NuPRISM concept can be applied to any long-baseline neutrino experiment (e.g. DUNE)

