Session summary

Water Cherenkov and Liquid Scintillator detectors

D. Grant, M. He, H. Tanaka, R. Wendell

NNN15 October 28-31, 2015, Stony Brook University

Organization

14:00	Liquid Scintillator technologies DENG, Ziyan (including water based and achi			
	Gd doping (EGADs, Watchmen, VAGINS, Mark ANNIE)			
15:00	Developments in photosensors WETSTEIN, Matthew (LAPPDs)			
	Developments in WENDELL, Roger et al. photosensors (broad sc			
	Coffee Break			
	Math Common Room, 4-125 (4 th -5 th floor)			
16:00	JUNO (R&D detector focus) ZHAO, Jie			
	Math Common Room, 4-125 (4 th -5 th floor)			
	HyperK (R&D focus) NISHIMURA, Yasuhiro			
	Math Common Room, 4-125 (4 th -5 th floor)			
	SNO+ status and prospects COULTER, Ian			
17:00	Math Common Room, 4-125 (4 th -5 th floor)			
	PINGU HIGHNIGHT, Joshua 🗎			
	Math Common Room, 4-125 (4 th -5 th floor)			
	ORCA JONGEN, Martijn 🖻			
	Math Common Room, 4-125 (4 th -5 th floor)			
10.00	Physics with a very large WBLSn KLEIN, Josh			
18:00	experiment			

Part1

Technology sub-session which contains general level talks on the status of R&D towards future detectors

Part2

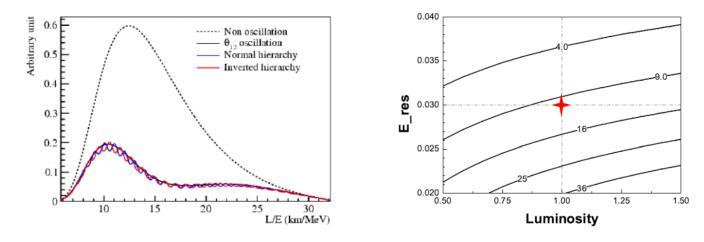
Experiment sub-session which contains detailed talks on the specific experiment R&D and sensitivity studies

History of WC and LS detectors

detection of neutrinos

and θ_{12} , Geoneutrinos

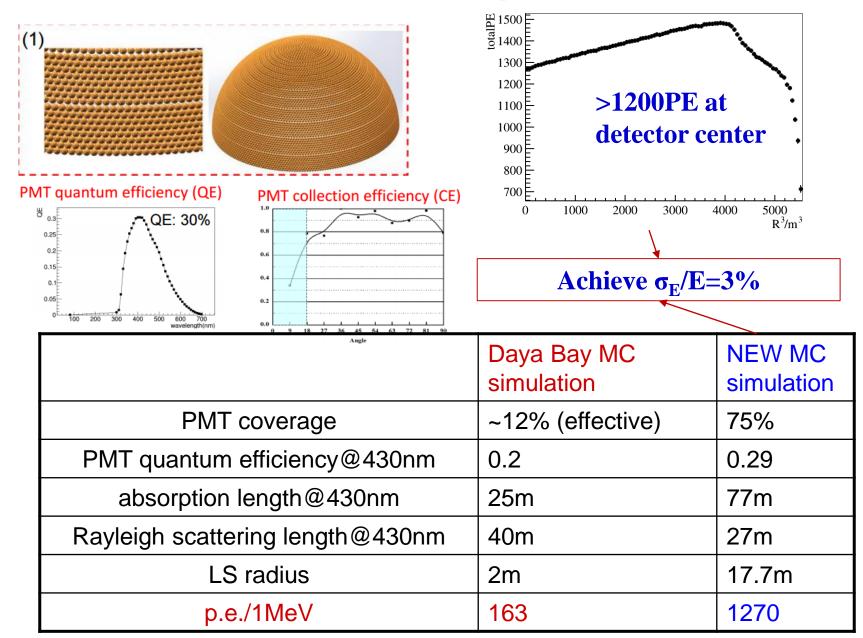
What's next


Water Chere	nkov Detector		
	Liquid Scintillator Detector		
CP-violation Atmospheric neutrino and θ ₂₃	Mass Hierarchy Nucleon decay Supernova Solar neutrino	Geo-neutrino Reactor neutrino and θ_{12} $0\nu\beta\beta$ decay Sterile neutrino	

Large LS detector technique and performance

Ziyan Deng

Determine mass hierarchy with reactor antineutrinos


- \Rightarrow Interference between Δm_{31}^2 and Δm_{32}^2
- → Requirement to the experiment
 - ✓ High statistics \rightarrow large detector and long exposure
 - $\checkmark Good energy resolution \rightarrow increase photoelectrons and control systematics$

How to design a detector with 3% energy resolution?

- Scale light yield from running liquid scintillator detectors
- Study detector performance with full detector simulation
 - Based on reliable MC simulation package, p.e. tuned to data
- With expected geometry and optical parameters as input

Increase number of photoelectrons

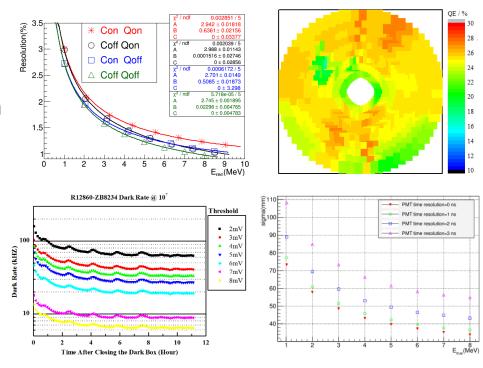
6

Control systematics

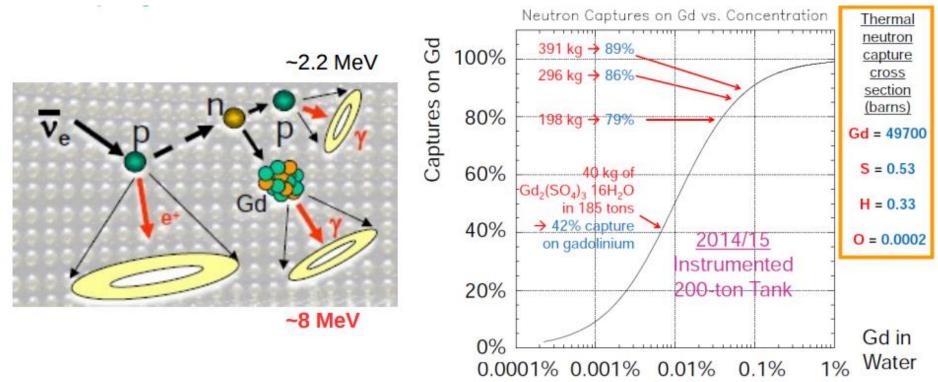
$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{A}{\sqrt{E}}\right)^2 + B^2 + \left(\frac{C}{E}\right)^2} \approx$$

$$\sqrt{\left(\frac{A}{\sqrt{E}}\right)^{2} + \left(\frac{1.6B}{\sqrt{E}}\right)^{2} + \left(\frac{C}{1.6\sqrt{E}}\right)^{2}}$$

Detector energy resolution

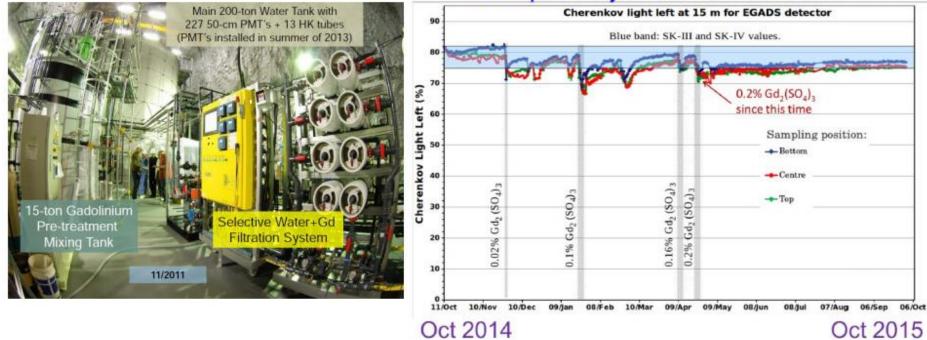

Effective energy resolution to MH sensitivity

- A: Stochastic term
- B: Constant term
- C: Noise term


Reduce non-stochastic term is important!

To get effective energy resolution: 3%/√E

- LS attenuation length: >20m @430nm
- PMT QE: >30%@430nm
- PMT photocathode coverage: >75%
- PMT charge resolution: <30%
- PMT QE non-uniformity: <20%
- PMT time resolution: <3ns
- PMT dark noise: <50kHz/PMT


<u>Gd doping in water</u> Mark Vagins

- Adding water soluble gadolinium to water Cherenkov detectors enhances sensitivity to a variety of physics channels by providing a neutron tag
- Provide enhanced sensitivity to inverse beta decay \rightarrow Supernova relic ν
 - Remote nuclear reactor monitoring
- Proton decay searches: Suppress atmospheric neutrino backgrounds since they are often accompanied by (multiple) neutrons while signals are not
- Improved v / v discrimination in atmospheric and LBL neutrino experiments

EGADS Gd-Doping Demonstrator

Transparency of Gd-loaded water

- 200 Ton demonstrator experiment designed to mimic Super-Kamiokande, EGADs, operating with Gd loading at various concentrations since 2014
 Even with the full loading, 0.2% Gd by mass, use of selective filtration system effectively cleans the detector water, without loss of Gadolinium
 - Super-K-level water transparency achieved!
- Neutron's from an Am/Be-BGO calibration source have been seen in the detector
 - Measured capture times shouw good agreement between data and MC

 p_1 : average capture time of neutron (µsec)

	2178±76ppm	1055±37ppm	225 <u>+</u> 8ppm
Data	29.89 ± 0.33	51.48 ± 0.52	130.1 ± 1.7
MC	30.05 ± 1.14	53.47 ± 1.77	126.2 ± 2.8

As a result

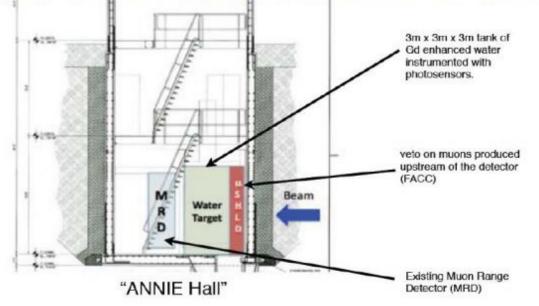
After years of testing and study – culminating in these powerful EGADS results – no technical showstoppers have been encountered. Therefore:

On June 27, 2015, the Super-Kamiokande collaboration approved the SuperK-Gd project which will enhance anti-neutrino detectability by dissolving gadolinium to the Super-K water.

The actual schedule of the project including refurbishment of the tank and Gd-loading time will be determined soon taking into account the T2K schedule.

In addition, Gd-doping is also planned (or under consideration) for other currentand next-generation detectors:

Other Upcoming Gd-loaded detectors


Reactor monitoring with WATCHMAN

Baseline WATCHMAN Detector Design

- Stainless cylindrical tank, assembled in place in existing IMB cavern
- 3.5 kilotons total volume Gd-H₂O, 1 kton fiducial
- 4810 inner 12" PMTs, 40% + HQE → 50% more light collection than Super-K
 - Largest cost item, main schedule determinant

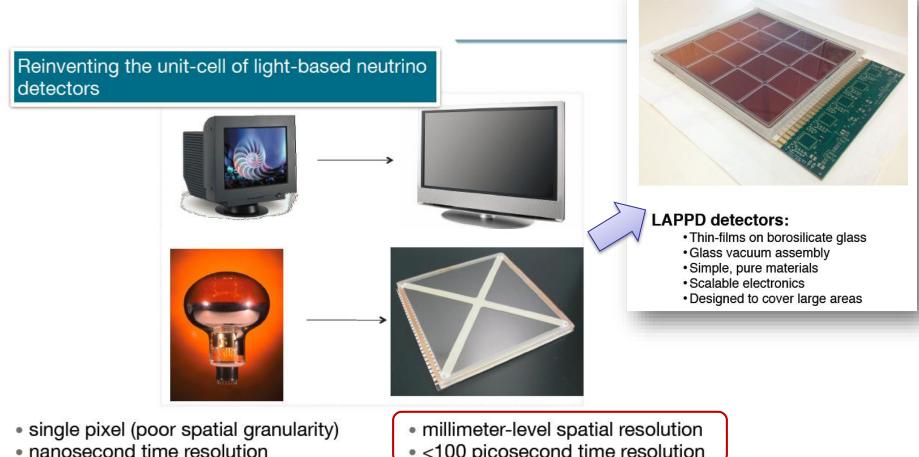
Neutron multiplicity measurements at FNAL booster neutrino beam with ANNIE

May 28 2015 - DOE-SC-HEP decision not to support WATCHMAN deployment

N.B: DNN is still supportive and claims ~\$20M-\$30M is set aside

And more:

nuPRISM


TITUS

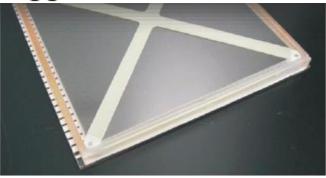
IceCube

Hyper-Kamiokande

11

LAPPD Matt Wetstein

- bulky
- blown glass
- sensitive to magnetic fields

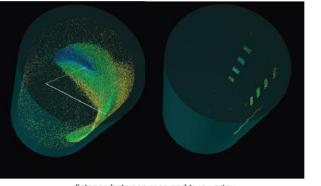

- <100 picosecond time resolution
- compact
- standard sheet glass
- operable in a magnetic field

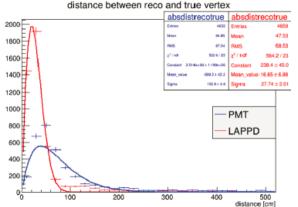
Commercialization status

- Now moving along in the commercialization phase.
- Limited numbers soon available for early adopters.
- Volume and markets will bring down the price, gen-II research could make an even bigger dent.

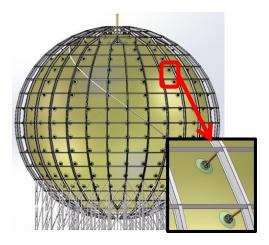
Milestones


 Early-November: seal 1st LAPPD tile at UC Berkeley, Space Sciences Laboratory

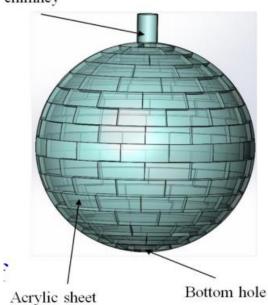

- Mid-November: seal a mock tile at Incom that includes anode/ sidewall, glass capillary arrays (not MCPs), X-spacers, top window, no photocathode
- Mid-December: seal 1st LAPPD tile at Incom
- End-December: seal 2nd LAPPD tile at UC Berkeley, Space Sciences Laboratory
- Mid-January: seal 2nd LAPPD tile at Incom


<u>ANNIE</u>

- Accelerator Neutrino Neutron Interaction Experiment
 - A US based R&D water Cherenkov facility
 - Demonstration of LAPPDs in a neutrino experiment
 - Application of fast, waveform sampling (PSEC) electronics
 - First use of Gd on a high energy neutrino beam



- Phase I test runs: ~ 2016
- Phase II first physics run: ~2018
- Phase II second physics run: ~2021

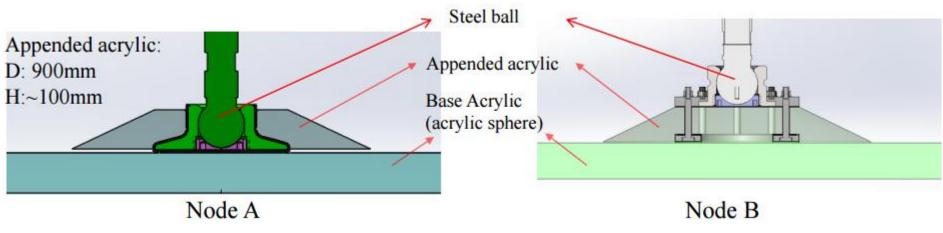

JUNO central detector R&D Jie Zhao

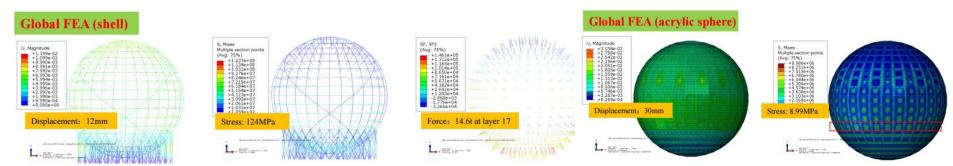
Composition

- \Rightarrow **Acrylic sphere**: Φ 35.4m, 600t
- \Rightarrow Stainless steel frame: $\Phi 40m$, $\sim 400t$
 - \checkmark Connecting nodes: ~500
 - ✓ Diagonal brace: increasing stability
- ⇒ **20 inch PMT**: ~17,000

chimney

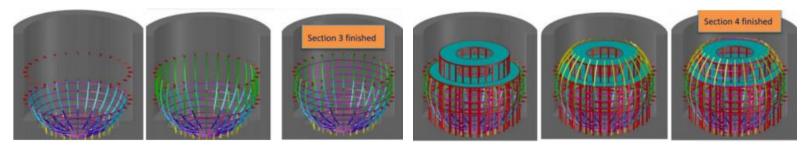
Acrylic sphere


- More than 170 pieces of acrylic, ~ 3m x 8m x 120mm for each piece
- ⇒ Sample pieces are made
- ➡ Quick bonding (~6h for curing)

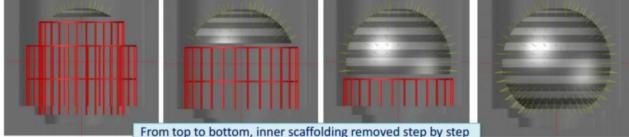

Mechanics design and strength analysis

Joint of the Acrylic and Truss

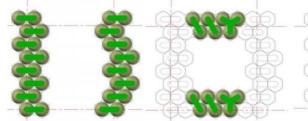
⇒ The maximum breaking strength of scaled node is above 51tons

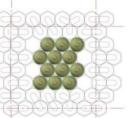


- Shell is strong enough to support acrylic sphere
- Acrylic sphere's stress is less than 5 MPa



Installation


- Building sequence: steel frame—Acrylic sphere—PMT installation
- Steel frame built: from bottom to top



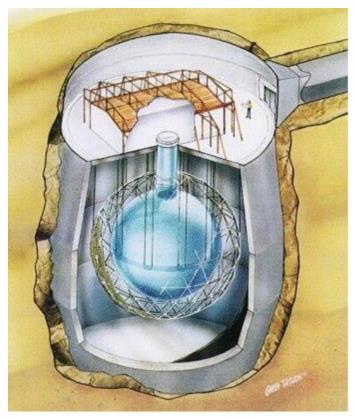
Acrylic sphere built: from top to bottom

• PMT installation: from top to bottom, window element

Schedule and milestones

- Integration drawing of engineering: 2016.7
- Truss assembly onsite: 2018.4.1 ~2018.6.30
- Acrylic assembly onsite: 2018.7.1~2019.3.31
- ◆ PMT installing: 2019.4.1~2019.6.30
 ⇒ Including PMT and electronics installing and check
- ◆ Filling: 2019.8.1~2019.12.31
 ⇒ Filling water both in water pool and CD: 2 months
 ⇒ Replacing water with LS in CD: 3 months
- Data taking: 2020 beginning

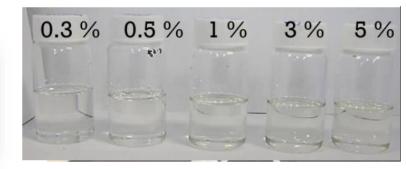
SNO+ Ian Coulter


Detector

- SNO+ will use an upgraded version of the SNO detector:
 - 780t scintillator contained within 6m radius acrylic sphere
 - Shielded by 7kt of ultrapure water
 - Surrounded by ~9300 PMTs mounted on a stainless steel support structure

Physics

- Neutrinoless double beta decay
- Low energy solar neutrinos
- Supernova neutrinos
- Reactor anti-neutrinos
- Geo-neutrinos
- Invisible nucleon decay
- Other exotics


6000 mwe underground

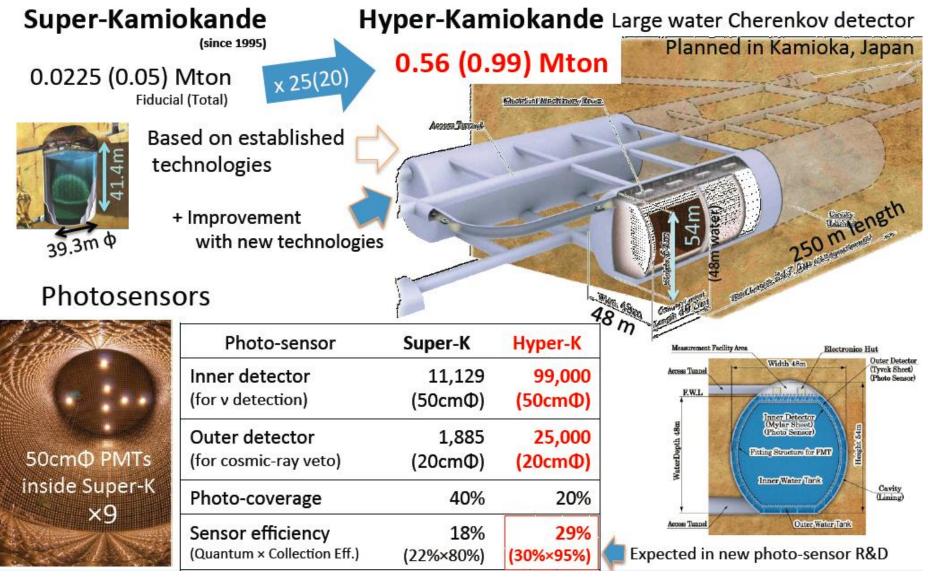
Phase I: $m_{\beta\beta} \sim 55-133 \text{ meV}$ Phase II: $m_{\beta\beta} \sim 19-46 \text{ meV}$

Tellurium Loading

- SNO+ will search for neutrinoless double beta decay using tellurium loaded into the scintillator
 - Initially 0.3% in Phase 1 then onto higher loadings
- 0.3% loading has been produced in larger batches of 30L and its properties measured
- Higher loadings of over 5% have been tested on a smaller scale

- Challenges
 - Backgrounds must be well understood
 - Purification techniques have been developed
 - Ability to tag backgrounds with beta-alpha discrimination
 - Several phase model gives ability to see how backgrounds (
 - Will be purified underground using a water/acid rinse cycle
 - Tests show reduction factor of 10³ per pass, 10⁶ for two passes for Co60 as well as reduction of optical impurities

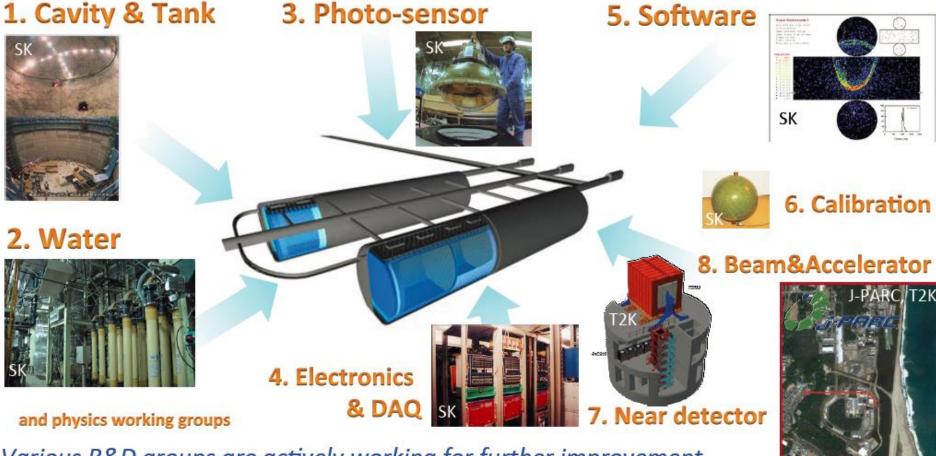
Cobalt removal by multi-pass purification original


Current Status

- Currently preparing for water-fill
 - Tests of new ropes using the buoyancy of AV
 - Installing calibration fibres
 - Replacing PMTs
 - Inspections of cavity
- Tellurium development
 - Finalising plans for the loading of 0.3%
 - Further development of higher loadings

Detector upgrades

- ➡ Improved electronics
- New optical fibre calibration systems
- ➡ Repaired PMTs
- ⇒ Hold-down ropes installed
- New scintillator plant constructed
- Phase of SNO+
 - \Rightarrow Water phase
 - → Pure scintillator
 - ⇒ Te-Loaded scintillator
- DAQ, electronics and data flow have been tested during "air fill" runs
 - Initial commissioning of calibration systems

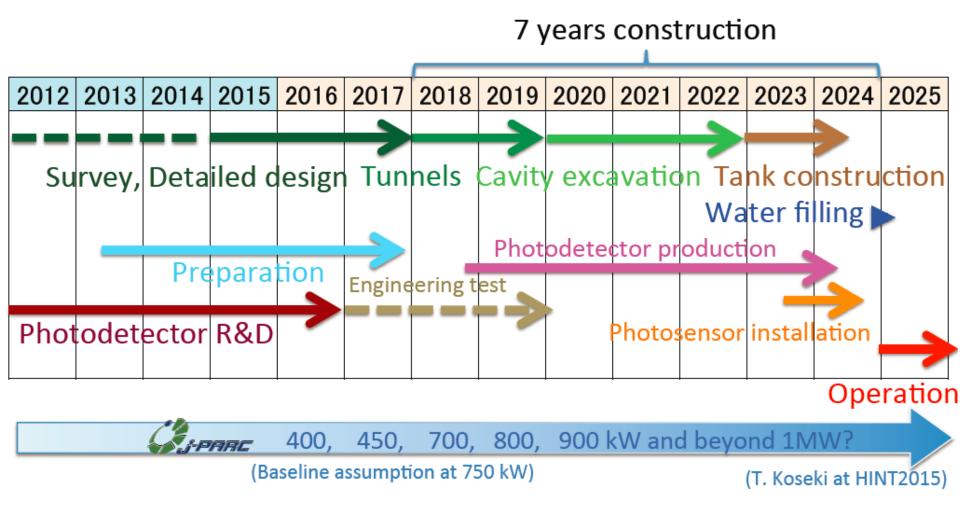

Hyper-Kamiokande Yasuhiro NISHIMURA

HyperK R&D

Construction : Super-K 1993 – 1996 25 yrs Hyper-K 2018 – 2023 (?)

 Studying Hyper-K design based on well-established Super-K by 8 Detector R&D working groups to construct Hyper-K.

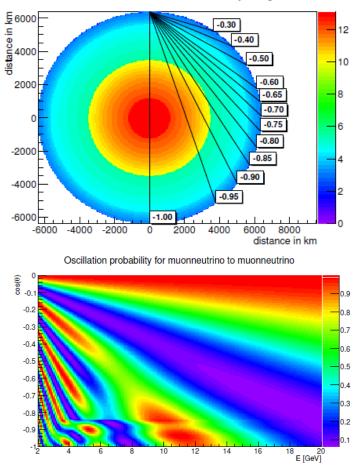
Various R&D groups are actively working for further improvement.


<u>50cmΦ photosensor candidates</u>

2 types of new 50 cm Φ photodetectors are developed.

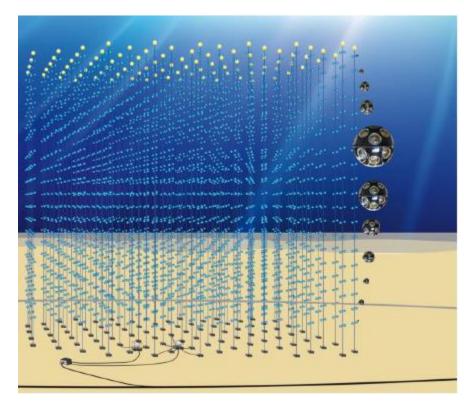
(Assuming budget approval, not determined yet)

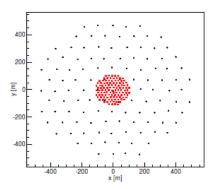
KM3NeT/ORCA Martijn Jongen


Measure the mass hierarchy with atmospheric neutrinos

Charged Current (CC)

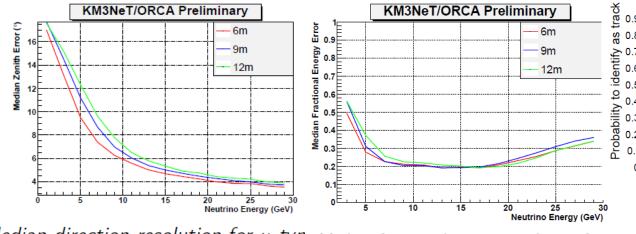
$$\nu_{\ell} + X \xrightarrow{\text{via } W^{\pm}} \ell + \text{hadronic cascade}$$

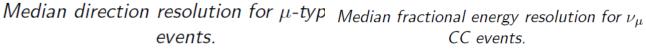

- ℓ = e ⇒ electromagnetic
 cascade
- $\ell = \mu \Rightarrow$ several meters long **track**
- ℓ = τ ⇒ immediately decays (strongly suppressed)
 cascade

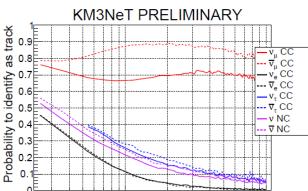

Particle ID by distinguishing `tracklike' events from 'cascade-like' events. Earth Model - colors show density in kg/dm^3

Zenith-energy plot of the $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillation probability with the MSW-effect.

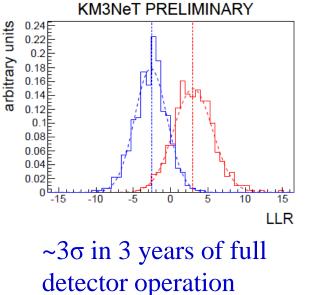
Detector footprint of ORCA (red) and ARCA (black)

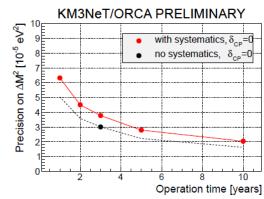

The KM3NeT Digital Optica Module.

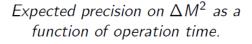


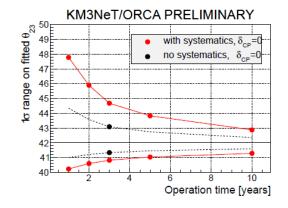

Second completed KM3NeT string at Nikhef.

- Six ORCA-style strings already funded
- First to be deployed before end of 2016
- String production started: 2 ARCA strings completed
- Deployment December 2015 and early 2016 27

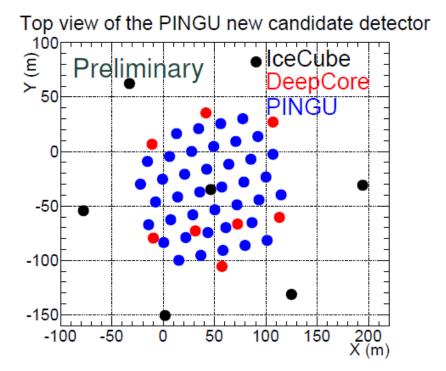

Performance



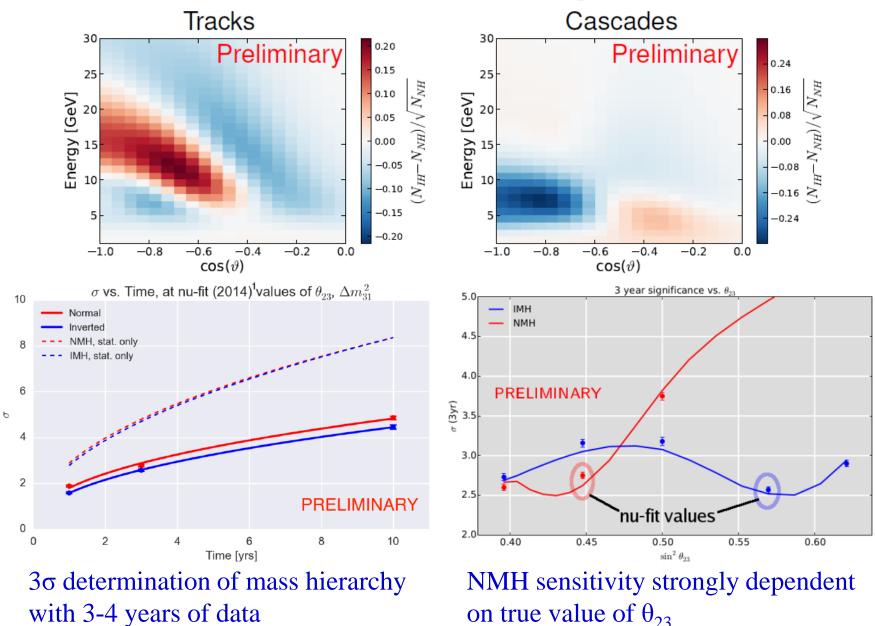




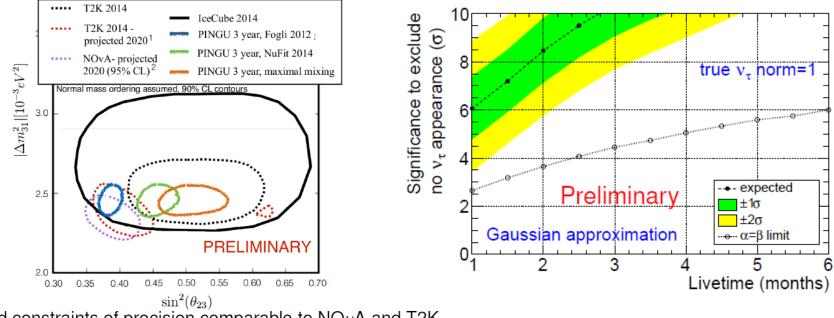
- e-like CC events better than 90% above 10 GeV



Expected precision on θ_{23} as a function of operation time.


PINGU Joshua Hignight

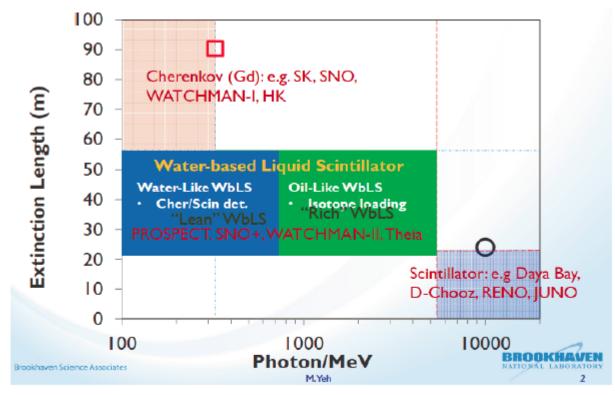
- 78 strings, 125 m string spacing
- 17 m modules vertical-spacing
- 8 strings, 75 m string spacing
- 7 m modules vertical-spacing
- 40 strings, 22 m string spacing
- 3 m modules vertical-spacing
 - all optical modules in clearest ice


- Precision measurements of atmospheric neutrino oscillation at a few GeV with very high statistics
 - Measure Neutrino Mass Hierarchy (NMH)
 - Precise measurement of Δm_{23}^2 , θ_{23}
 - High statistics measurement of ν_{τ} appearance

Mass hierarchy

Others physics in PINGU

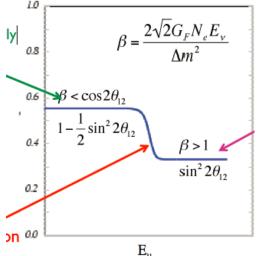
PINGU sensitivity to $\theta_{\rm 23}$

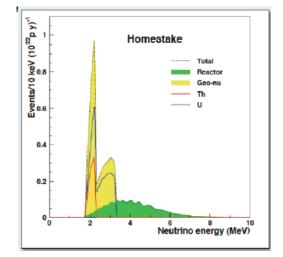

 Expected constraints of precision comparable to NOvA and T2K (projected)

- 5 σ exclusion of no ν_{τ} appearance after 1 month of data
- 10% precision in the ν_{τ} normalization after 6 months
 - Test of the unitarity of the ν mixing matrix

Water-based Liquid Scintillator Detector Josh, Klein

Physics	Size	Cherenkov Priority	Scintillation Priority	Cleanliness Priority
0νββ	~few ktonne	Medium	Very high	Very High
Low E Solar vs (< 1 MeV)	~10 ktonne	High	Very high	Very High
High E Solar ∨s (> I MeV)	>50 ktonne	High	Low	High
Geo/reactor anti-vs	~10 ktonne	Low	High	Medium
DSNB anti-ns	>50 ktonne	Low	High	Medium
Long-baseline vs	> 50 ktonne	Very high	Low	Low
Nucleon decay (K+ anti-v)	> 100 ktonne	High	High	Low


- Low-energy physics wants a clean detector with a lot of light
- High-energy physics wants a big detector with direction reconstruction



- Long attenuation length compared to scintillator=bigger detector
- Higher light yield=low threshold, good energy resolution
- High Cherlight/scintlight ratio makes directionality and background rejection possible

Plenty of physics possibilities

0vββ decay: a larger KamLAND-Zen (best limit so far)

Solar neutrino: need "statistics of Super-K with light yield of BOREXINO" to measure transition region

Geo-neutrinos

Supernova burst and diffuse

- Nucleon decay
- Sterile neutrinos
- Long baseline program

<u>Summary</u>

- Glorious history of Water Cherenkov and Liquid Scintillator detectors in the neutrino detection
- Future WC and LS detectors: larger, better
- Rich physics possibilities
- Technical challenges exist