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History of WC and LS detectors

- - IceCube
Glorious history! SNO - _
: : Solar neutrinos’ - PeV neutrinos
Only an incomplete list. oscillation
SuperK

Atmospheric
neutrinos’
Kamiokande oscillation
Supernova R
neutrinos

Borexino

Solar neutrinos, Reatct_or
Geoneutrinos neutrinos
and 0,

KamLAND

Mixture of water and _
liquid scintillator, first ~Reactor neutrinos
detection of neutrinos and 0;,, Geoneutrinos 3




What's next

Water Cherenkov Detector

CP-violation Mass Hierarchy
Atmospheric Nucleon decay
neutrino and 0,, Supernova

Solar neutrino

Geo-neutrino

Reactor neutrino
and 0.,

Ovpp decay
Sterile neutrino



Large LS detector technique and performance

_ _ _ _ ~ Ziyan Deng
Determine mass hierarchy with reactor antineutrinos

= Interference between Am?,, and Am?,,
= Requirement to the experiment
v High statistics — large detector and long exposure
v Good energy resolution — increase photoelectrons and control systematics
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B How to design a detector with 3% energy resolution?
+ Scale light yield from running liquid scintillator detectors
+ Study detector performance with full detector simulation
+ Based on reliable MC simulation package, p.e. tuned to data
+ With expected geometry and optical parameters as input
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Increase number of photoelectrons

, l 21500
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PMT coverage ~12% (effective) 75%
PMT guantum efficiency@430nm 0.2 0.29
absorption length@430nm 25m 77m
Rayleigh scattering length@430nm | 40m 27m
LS radius 2m 17.7m
p.e./1MeV 163 1270




Control systematics

GE
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Detector energy resolution

A: Stochastic term
B: Constant term

C: Noise term

m To get effective energy resolution: 3%/E
- LS attenuation length: >20m @430nm
- PMT QE: >30%@430nm
- PMT photocathode coverage: >75%
» PMT charge resolution: <30%
« PMT QE non-uniformity: <20%
« PMT time resolution: <3ns
- PMT dark noise: <50kHz/PMT
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Gd doping In water wmark vagins

~2.2 MeV

Captures on Gd

Neutron Captures on Gd vs. Concentration |
TrrnmT . 2 "r'!
10096 |- Mg R8O, 4.l
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Gd in

01% ““1.% Water

® Adding water soluble gadolinium to water Cherenkov detectors enhances sensitivity
to a variety of physics channels by providing a neutron tag

Provide enhanced sensitivity to inverse beta decay — Supernova relic v

« Remote nuclear reactor monitoring

Proton decay searches: Suppress atmospheric neutrino backgrounds since they are
often accompanied by (multiple) neutrons while signals are not

Improved v / v discrimination in atmospheric and LBL neutrino experiments




EGADS Gd Doplng Demonstrator Transparency of Gd-loaded water

s T g Main mux\ Water Tank w Cherenkov light left at 15 m for EGADS detector

227 50-cm PMT's + 13 HK tubes
(PMT"s |nstaled in summef of 2013)

Blue band: SK-11I and SK-IV values.
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since this time

Sampling position:

~— Bottom
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m 200 Ton demonstrator experiment designed to mimic Super-Kamiokande, EGADs,
operating with Gd loading at various concentrations since 2014

m Even with the full loading, 0.2% Gd by mass, use of selective filtration system
effectively cleans the detector water, without loss of Gadolinium

« Super-K-level water transparency achieved!
P, : average capture time of neutron (usec)

® Neutron's from an Am/Be-BGO calibration source
have been seen in the detector
. Measured capture times shouw good Data 29.89+033 5148+052 130.1+1.7



As a result ....

After years of testing and study
— culminating in these powerful EGADS results —
no technical showstoppers have been encountered. Therefore:

On June 27, 2015, the Super-Kamiokande
collaboration approved the SuperK-Gd project
which will enhance anti-neutrino detectability by
dissolving gadolinium to the Super-K water.

The actual schedule of the project including
refurbishment of the tank and Gd-loading time
will be determined soon taking into account the

T2K schedule.

¥ In addition, Gd-doping is also planned (or under consideration) for other current-
and next-generation detectors:
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Other Upcoming Gd-loaded detectors
® Reactor monitoring with WATCHMAN

Stainless cylindrical tank, assembled in place in
existing IMB cavern

May 28 2015 - DOE-SC-HEP
decision not to support
WATCHMAN deployment
Baseline WATCHMAN Detector Design

N.B: DNN is still supportive and

claims ~$20M-$30M is set aside

« 3.5 kilotons total volume Gd-H,0, 1 kton fiducial 4 " :

4810 inner 12" PMTs, 40% + HQE - 50% more light
collection than Super-K '

- Largest cost item, main schedule determinant

® Neutron multiplicity measurements at FNAL booster neutrino beam with ANNIE

3m x 3m x 3m tank of
Cd enhanced water
instrumented with

/ pholosensors,

veto on muons produced
___. upstream ol the detector
(FACC)

e
aun

“ANNIE Hall” Detector (MRD)

® And more:
« Hyper-Kamiokande
« huPRISM
« TITUS
= |ceCube
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LAPPD Matt Wetstein

Reinventing the unit-cell of light-based neutrino
detectors

LAPPD detectors:
* Thin-films on borosilicate glass
* Glass vacuum assembly
» Simple, pure materials
* Scalable electronics
* Designed to cover large areas

» single pixel (poor spatial granularity) [ » millimeter-level spatial resolution ]
» nanosecond time resolution » <100 picosecond time resolution

* bulky » compact

» blown glass » standard sheet glass

» sensitive to magnetic fields » operable in a magnetic field

12



Commercilalization status

e Now moving along in the commercialization phase.

 Limited numbers soon available for early adopters.

e Volume and markets will bring down the price, gen-li
research could make an even bigger dent.

Milestones

 Early-November: seal 1st LAPPD
tile at UC Berkeley, Space
Sciences Laboratory

* Mid-November: seal a mock tile at Incom that includes anode/
sidewall, glass capillary arrays (not MCPs), X-spacers, top window, no
photocathode

* Mid-December: seal 1st LAPPD tile at Incom

* End-December: seal 2" LAPPD tile at UC Berkeley, Space Sciences
Laboratory

* Mid-January: seal 2" LAPPD tile at Incom 1
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ANNIE

Accelerator Neutrino Neutron Interaction Experiment
A US based R&D water Cherenkov facility

- Demonstration of LAPPDs in a neutrino experiment
- Application of fast, waveform sampling (PSEC) electronics
- First use of Gd on a high energy neutrino beam

Pha\;égl/— test runs: ~2016
Phase Il — first physics run: ~2018
Phase Il — second physics run: ~2021

- 8 88 8 8§ 8§ 8 S
1
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| Acrvlic sheet Bottom hole

JUNO central detector R&D Jie zhao

¢ Composition

= Acrylic sphere: ®35.4m, 600t

= Stainless steel frame: ®40m, ~400t

v Connecting nodes: ~500
v Diagonal brace: increasing stability

= 20 inch PMT: ~17,000

chimney ‘ AC ryl | CS p h ere

= More than 170 pieces of acrylic, ~ 3m x 8m x
120mm for each piece
i = Sample pieces are made
= = Quick bonding (~6h for curing)




Mechanics design and strength analysis

Joint of the Acrylic and Truss
= The maximum breaking strength of scaled node is above 51tons

Steel ball o
-
T Appended acrylic «_ - *l
Base Acrylic \ Uy S
(acrylic sphere) > |

- CaN " - ‘ ”‘--,(‘; =% > 2

Appended acrylic:
D: 900mm
H:~100mm

No&éA | Node B
Shell is strong enough to support acrylic sphere

Acrylic sphere’s stress is less than 5 MPa

Global FEA (shell) Global FEA (acrylic sphere)

:

Displacement: 12mm Stress: 124MPa Force: 14.6tat layer 17
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Installation

Building sequence: steel frame—Acrylic sphere—PMT
Installation

Steel frame built: from bottom to top

111

/0

]/
[ ]

Acrylic sphere built: from top to bottom

From top to bottom, inner scaffolding removed step by step

PMT installation: from top to bottom, window element

1. =
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Schedule and milestones

¢ Integration drawing of engineering: 2016.7
¢ Truss assembly onsite: 2018.4.1 ~2018.6.30
¢ Acrylic assembly onsite: 2018.7.1~2019.3.31

¢ PMT installing: 2019.4.1~2019.6.30

= Including PMT and electronics installing and check

¢ Filling: 2019.8.1~2019.12.31

= Filling water both in water pool and CD: 2 months
= Replacing water with LS in CD: 3 months

¢ Data taking: 2020 beginning

18



Detector

* SNO+ will use an upgraded version of

the SNO detector:

SNO+ 1an coulter

6000 mwe underground

« 780t scintillator contained within 6m radius = £ s %:a-’

acrylic sphere

* Shielded by 7kt of ultrapure water

* Surrounded by ~9300 PMTs mounted on a
stainless steel support structure

Physics

* Neutrinoless double beta decay

Low energy solar neutrinos
Supernova neutrinos
Reactor anti-neutrinos
Geo-neutrinos

Invisible nucleon decay

Other exotics

Phase I: Mg ~ 55-133 meV

Phase I1: Mg ~ 19-46 meV
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Tellurium Loading

* SNO+ will search for neutrinoless double beta decay using tellurium loaded into
the scintillator
* Initially 0.3% in Phase 1 then onto higher loadings

103% 05% 1% 3% 5%

E & N - T ¥ |
. i

* 0.3% loading has been produced in larger batches
of 30L and its properties measured

* Higher loadings of over 5% have been tested on a
smaller scale

* Challenges
* Backgrounds must be well understood
* Purification techniques have been developed
* Ability to tag backgrounds with beta-alpha discrimination
* Several phase model gives ability to see how backgrounds «

Cobalt removal

by multi-pass
purification

* Will be purified underground using a water/acid rinse cycle

* Tests show reduction factor of 103 per pass, 10° for two passes
for Co60 as well as reduction of optical impurities

20



Current Status

* Currently preparing for water-fill
* Tests of new ropes using the buoyancy of AV
* |nstalling calibration fibres
* Replacing PMTs
* Inspections of cavity

* Tellurium development

* Finalising plans for the loading of 0.3%
* Further development of higher loadings

Detector upgrades

= Improved electronics

= New optical fibre calibration
systems

= Repaired PMTs

= Hold-down ropes installed

= New scintillator plant
constructed

Phase of SNO+

= Water phase

= Pure scintillator

= Te-Loaded scintillator

* DAQ, electronics and data flow have been tested during “air fill” runs

* |nitial commissioning of calibration systems
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Hyper-Kamiokande vasuhiro NISHIMURA

Super-Kamiokande Hyper-Kamiokande Large water Cherenkov detector
(since 1995) add in Kaminka lanan
0.56 (0.99) Mton |

0.0225 (0.05) Mton

Fiducial (Total)

Based on established ’
technologies

+ Improvement . L i B e g
with new technologies o ‘ o et

253m®

Photosensors

Photo-sensor Super-K Hyper-K
Inner detector 11,129 99,000
(for v detection) (50cm®)  (50cm®)
- Outer detector 1,885 25,000
50cm@® PMTs (for cosmic-ray veto) (20cm®)  (20cm®)
‘ inside Super-K Photo-coverage 40% 20% ;
X9

Sensor efficiency 18% 29%

(Quantum x Collection Eff.) (22%x80%) |(30%x95%) . Expected in new photo-sensor R&D

22



HyperK R&D

Construction : Super-K 1993 —1996 ~25yrs - Hyper-K 2018 — 2023 (?)

® Studying Hyper-K design based on well-established Super-K
by 8 Detector R&D working groups to construct Hyper-K.

1. Cavity & Tank 3. Photo-sensor 5. Software —

6 Calibration

8 Beam&Acce|erator

and physics working groups

Various R&D groups are actively working for further improvement.




50cm® photosensor candidates

® 2 types of new 50 cm @ photodetectors are developed.

Model
Amplification
Q.E.

C.E. ©®46 (®50)
T.T.S. (FWHM)
Bias voltage
Proof test

R3600 (Established)
Venetian blind dynode
~22% (or ~30% in HQEF)
67% (61%)

5:51N8

2 kV bias
2 yrs for HQE (19yrsin k)

R12860
Box and line dynode

~30%

95% (85%)t

2.7 ns

2 kV bias

1 yrs now from Sep.2014

Box&Line PMT New o

50.8 cm o)

)
| 1)
"Avalanche
High QE! diode
R12850 * still in R&D
20mm@ Avalanche diode
~30%

93% (76%) w/ 5ch AD'
0.75ns (w/o Preamp.)

8 kV bias + AD bias (<1kV)
> 0.5 yrs expected

C.E. = Collection efficiency of 1 photoelectron, T.T.S. = Transit Time Spread, by calculation

24



Timeline

(Assuming budget approval, not determined yet)

7 years construction

2012|2013|2014|2015|2016|2017|2018|2019|2020 2021|2022 2023|2024 |2025

- ﬁ
Survey, Detal Cavity excavatign Tahk construction

Water filling p»
. iy Photpdetector prioduction
Pr paragion Engingering test
2 B N *

Photogensor|installation ,

(Baseline assumption at 750 kW)

“Operation

{e%smmame 400, 450, 700, 800, 900 kw_

(T. Koseki at HINT2015)
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KM3NeT/ORCA Martijn Jongen

Measure the mass hierarchy with atmospheric neutrinos

Charged Current (CC)

ve+X if—m—f—} (+hadronic cascade

» (= e = electromagnetic
cascade

» ( = i = several meters long
track

» (=7 = immediately decays

(strongly suppressed)
cascade

Particle ID by distinguishing “track-

like' events from 'cascade-like' events.

Earth Model - colors show density in kg/dm*3

distancein km

I4

&n
=1
]
_||||||||

&
=]

00 -4009 2000 0 2000 4000 6000 SDDU
distance in km

Oscillation probability for muonneutrino to muonneutrino

B 20
E [GeV]

Zenith-energy plot of the v,, — v, oscillation
probability with the MSW-effect.
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Detectors

400

200 *

y(m]
(=]
T
7
=

a0 © 0T

B i
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-400 -200 ] 200 400
x [m]

Detector footprint of ORCA (red) and ARCA

The KM3NeT Digital Optical
Module.

» Six ORCA-style strings already funded
» First to be deployed before end of 2016

» String production started: 2 ARCA strings
completed

Second com/eted KM3NeT
string at Nikhef » Deployment December 2015 and early 2016 57



Performance

KM3NeT PRELIMINARY

| KM3NeT/ORCA Preliminary | | KM3NeT/ORCA Preliminary | ?g, ; glé |
— = . 1 o Y.IE l
T Fu — 6m g k —6m - E —v, CC
B 18] :\ W 0.9F © 0'85;\' 7. cc
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23
function of operation time. of operation time.

~3c In 3 years of full
detector operation 28



PINGU Joshua Hignight

® 78 strings, 125 m string oy o1 o ey canete Cetector
spacing g - Prelipinary 'E"S&Jggre ]
@ 17 m modules vertical-spacing ~ °f Soo PINGU
. o v
@ 8 strings, 75 m string spacing 0 :;-::::i'
@ 7/ m modules vertical-spacing _50i_' ':-."f_'.;- ° *
L eyt
@ 40 strings, 22 m string spacing -100p o3
@ 3 m modules vertical-spacing _1505 ’ o
» all optical modules in 1100 <50 0 50 100 150 200

clearest ice

@ Precision measurements of atmospheric neutrino oscillation at a
few GeV with very high statistics

» Measure Neutrino Mass Hierarchy (NMH)
» Precise measurement of Amsz,, 023
» High statistics measurement of v, appearance
29
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Mass hierarchy

Tracks
30 T T T
- L 0.20
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Cascades
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3 year significance vs. 6.,
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NMH sensitivity strongly dependent
on true value of 6,,
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Others physics in PINGU

PINGU sensitivity to 623

----- T2K 2014

— [ceCube 2014 [ 10 L R B I B
..... g:‘zo?cit(:}:llqzbzoW wee PINGU 3 year, Fogli 2012 ; g 5 i
B - NOVA- projected ™ PINGU 3 year, NuFit 2014 E "J 8
L 2020 (95% CL)?  wews PINGU 3 year, maximal mixing L E true V. norm=1 |
ﬁl:\u Normal mass ordering assumed, 90% CL conto 2 E .
= a0} 0D o &
~ 5 [ g
: g g g
© L &
4 = e
....................... c = B s ]
i:,%-j 2 o N -+- expected ]
“l L. o Preliminary . __|mm+i i
S e - _ o 20 ]
RRRRIER - Gaussian approximation e 0B limit | ]
PREL'MINARY D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1
y - 1 2 3 4 3 6
030 035 040 045 050 055 060 065 070 Livetime (mon‘ths}
51112(923)
@ Expected constraints of precision comparable to NOrvA and T2K
(projected)

@ 50 exclusion of no - appearance after 1 month of data

@ 10% precision in the v normalization after 6 months
» Test of the unitarity of the » mixing matrix
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Water-based Liquid Scintillator Detector sosh, kiein

Ovpp ~few ktonne Medium Very high Very High
Low E Solar vs  ~10 ktonne High Very high Very High
(< IMeV)

High E Solar vs  >50 ktonne High Low High

(= 1 MeV)

Geo/reactor ~10 ktonne Low High Medium
anti-vs

DSNB anti-ns >50 ktonne Low High Medium
Long-baseline vs > 50 ktonne Very high Low Low
Nucleon decay > 100 ktonne High High Low

(K+ anti-v)

* Low-energy physics wants a clean detector with a lot of light
* High-energy physics wants a big detector with direction reconstruction

32



100

90 - 0O
80 Cherenkov (Gd): e.g. SK, SNO,
T 20 WATCHMAN-I, HK.
— N Z
-Eo 60 - ,
E 50 Water-based Liquid Scintillator
- Water-Lilee WhLS Oil-Like WhLS
E 40 +  Cher/Scin det. = lsotone Inading
S 30
= r '
E 2ﬂ 5 I I i ' i Ba
= m i - ¥r
w 10 - [}qhHTF NO, JUNC
0 T T T 1 T T H”! I| -.I|- —
100 000 10000 _—
Brookhaven Sciemos Assaciates PhutDnIMEV Eﬁqmﬁﬂ

MLreh 2

Long attenuation length compared to scintillator=bigger detector
Higher light yield=low threshold, good energy resolution

High Cherlight/scintlight ratio makes directionality and background
rejection possible
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Plenty of physics possibilities

Ovpp decay: a larger
KamLAND-Zen
(bestmit so far)

2\2G.N.E,
A}nz

y B =

. [
i ]—Esm22f?,2

B>l /

Solar neutrinﬁé: need
“statistics of Super-K with
light yield of BOREXINO”
to measure transition region

Events/10 keV (10%p y)"
2 a -

Homestake

]

-~ Tetal

ms  Reactor

Geo-nu
— Th

6 ] 10
Meutrino energy (MeV)

Geo-neutrinos

Supernova
burst and
diffuse

Nucleon decay
Sterile neutrinos
Long baseline program
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Summary

Glorious history of Water Cherenkov and Liquid
Scintillator detectors in the neutrino detection

Future WC and LS detectors: larger, better
Rich physics possibilities
Technical challenges exist
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