
# SiPM Read Out options for EEEMCAL prototype beam tests at Jefferson Lab

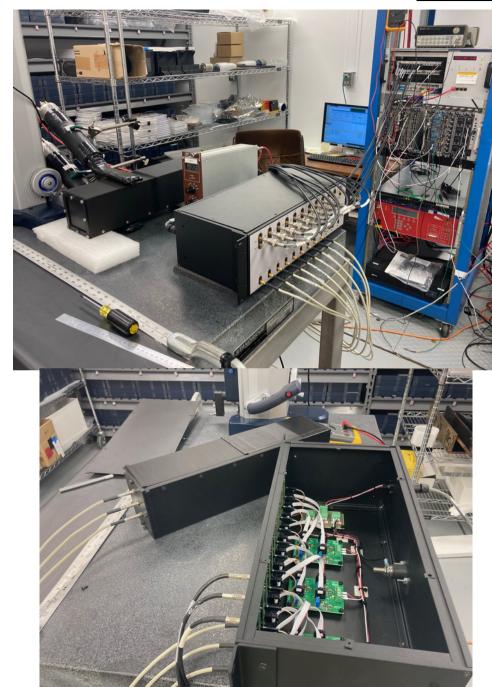
Vladimir V. Berdnikov (CUA) for EEEMCAL consortia

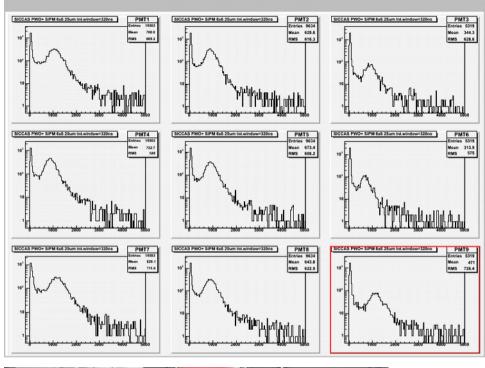
#### **EEEMCAL 3x3 PWO prototype SiPM based**

Goal of the tests: Optimize and test SiPM readout chain with new generation PWO crystals



- Improved prototype with new SiPM based assembly
- Same size 3D printed frame as PMT based version
- Two piece SiPM holder concept developed
- Holders are 3D printed (PLA plastic)
- PEEK plastic will be used in real detector
- Silicon based glue for frame, no SiPM glueing to crystal
- SiPM soldered to circuit board with SMA connector
- 25um cell SiPM for beam tests installed (75um second option)
- LEMO output at the detector patch panel (BIAS/Preamp or Waveboard application)





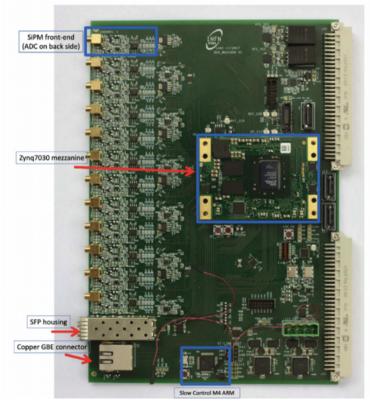



### Configuration #1: BDX Bias/Preamp boards Readout of SiPM <u>EEEMCAL</u>








## Configuration #2: BDX SRO Waveboard tests with EEEMCAL prototype in HallD

BDX experiment at Jefferson Lab

https://indico.cern.ch/event/803690/contributions/3572798/attachments/1916342/3168330/DeNapoli-NEPLES2019.pdf

#### FEE & DAQ

#### A multi-channel FEE and digitizer board developed for BDX



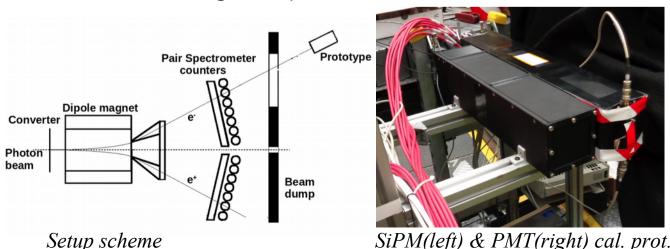
- Highly configurable
- · FEE included on-board
  - 12 ch individually controlled
  - SiPM connected through coaxial cables and MCX connector
  - · dual gain amplifiers
  - bias generated on-board (up to 100V, resolution <50mV)</li>
- Sampling unit
  - resolution 12 or 14 bit
  - sampling frequencies of 65, 125, 160, and 250 MHz
- Timing
  - external clock/time-stamp (GPS)
  - Phase Locked Loop to multiply the input clock and distribute to each ADC and to the FPGA

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

. M. Battaglieri b. M. Bondi C. M. Capodiferro b. A. Celentano b. T. Chiarusi d. G. Chiodi b. M. De Napoli C. R.

A low cost, high speed, multichannel analog to

Lunadei \*, L. Marsicano b, P. Musico b A ™, F. Pratolongo b, L. Recchia \*, D. Ruggieri \*, L. Stellato


digital converter board

- · Board control
  - commercial FPGA for Data collection and manipulation
  - separated M4 ARM processor for the control of the many ADCs, HV regulators etc
  - Slow control EPICS interface
- VME connection only for power (+5V,+12V) (bus not used) and mechanical support
- Board cost depends on the configuration (range 1.5-3 k€/board)

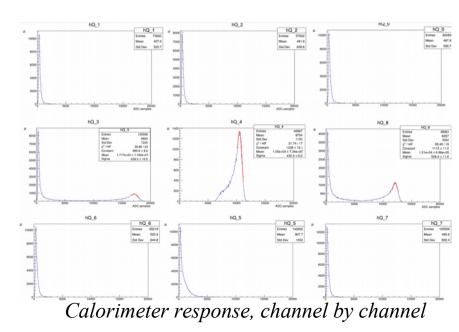
## Configuration #2: BDX SRO Waveboard tests with EEEMCAL prototype in HallD

Goal of the tests: test/optimize the entire readout: preamps, fADC or Waveboard digitizers in combination with streaming DAQ system

- HallD parasitic test beam area, secondary lepton beam with energy range (3-6) GeV
- Trigger based measurement method established with NPS and FCALII prototypes (baseline)
- Recently instrumented new prototypes with SiPM or PMT photosensors (3x3 matrix) to measure the performance of the calorimetry scintillator materials PWO and SciGlass
- Spring/summer run 2020 HallD tests:
  - → 3x3 PMT based PWO prototype installed. The position aligned and surveyed on micron level
  - → Baseline calorimeter performance established with trigger GlueX DAQ (parasitic mode)
  - → Central cell events hits (PS tile 59) correspond to ~ 4.5GeV lepton
  - → INFN Waveboard ADC instrumented in mini VXS crate for SRO tests
  - → Scintillator pads in front of central cell installed for software L2 trigger
  - → SRO DAQ cabled, connected and tested



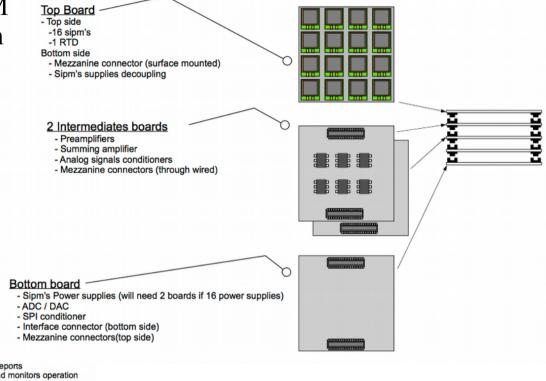
SiPM(left) & PMT(right) cal. prot.

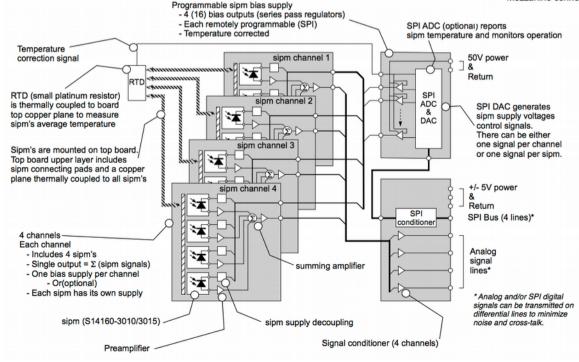



Waveboard

#### Configuration #2: SRO tests behind Pair Spectrometer in HallD

- SRO tests performed during GlueX HighLuminosity run (350nA photon beam)
- Waveboard read-out 9 calorimetry channels (PMT's) + 2 trigger channels (SiPM's)
- SiPM's voltage supply and preamplification directly at the Waveboard
- ~1.5 kHZ rate per channel with BEAM ON, no issues observed
- Waveboard+TriDAS+JANA2 DAQ chain tested
- Beam data acquired:
  - → Binary data (Waveboard stand alone)
  - → Without L2 software trigger (Waveboard+TriDAS)
  - → With different combinations of L2 trigger(Waveboard+TriDAS+JANA2)
- JANA reconstruction and calibration offline plugin update and data analysis ongoing


|       |       |       | /ReadParam    | DATE MON (U-) | CTART TUR | CTOD TUD |
|-------|-------|-------|---------------|---------------|-----------|----------|
| RATE# | SL0T# | CHAN# | PEDESTAL*4096 | RATE MON (Hz) | START THR | STOP THR |
| 0×00  | 0×00  |       | 0x03D4F9E8    |               | 0×0000    | 0×0000   |
| 0×00  | 0x01  | 1     | 0x03D4F9A0    | 1300          | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  | 2     | 0x03D53111    | 900           | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  |       | 0x03D51236    | 400           | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  |       | 0x03D514CB    | 2100          | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  | 5     | 0x03D4C724    | 700           | 0x36B0    | 0x3D40   |
| 0×00  | 0×01  | 6     | 0x03D5365B    | 1700          | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  |       | 0x03D53128    | 1900          | 0x3D22    | 0x3D40   |
| 0×00  | 0×01  |       | 0x03D5027F    | 1700          | 0x3D22    | 0x3D40   |
| 0x00  | 0×01  | 9     | 0x03D55563    | 1400          | 0x3D22    | 0x3D40   |




#### Configuration #3: SiPM matrix based 3x3 CRYTUR PWO prototype

# Goal of the tests: Optimize and test SiPM matrix readout chain with new generation PWO crystals

- CRYTUR USA concept
- 9 CRYTUR crystals
- 16 SiPMs per crystal
- 3x3 mm<sup>2</sup> SiPMs
- ~90k cells per SiPM
- Plug-n-play prototype
- First working RO version for EIC



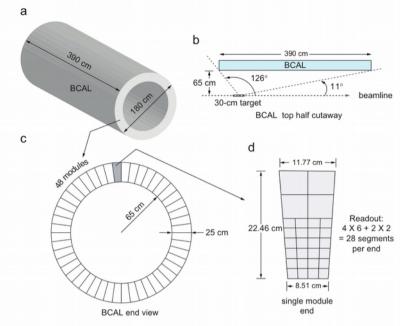
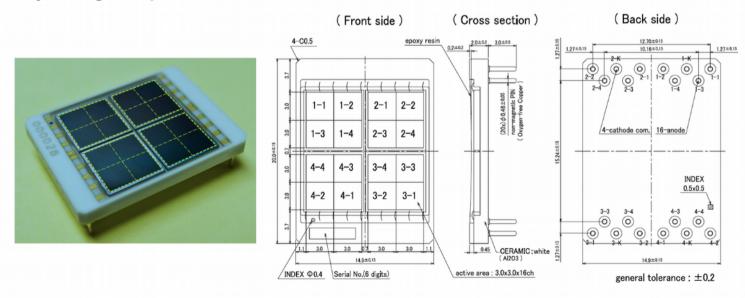


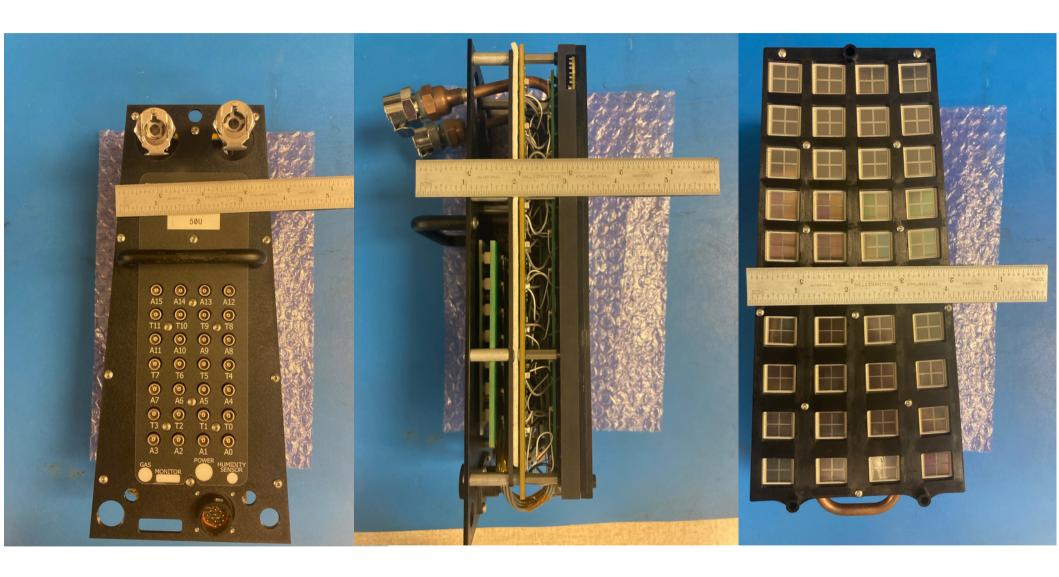
- Expect delivery: October 2021
- Direct performance comparison with 3x3 PMT version, INFN SiPM version
- Energy resolution studies
- Noise studies
- Light collection studies
- Linearity studies
- Threshold studies

#### Considered configuration: SiPMs applications to GlueX Calorimetry

Nucl.Instrum.Meth.A 987 (2021) 164807 Instrum.Exp.Tech. 60 (2017) 3, 322-329 J.Phys.Conf.Ser. 798 (2017) 1, 012223 Nucl.Instrum.Meth.A 896 (2018) 24-42

Electronics Overview TCR
<u>Fernando J. Barbosa</u>
https://halldweb.jlab.org/docpublic/DocDB/ShowDocument?docid=2515



Fig. 2. The GlueX BCAL. (a) BCAL schematic; (b) a BCAL module side view; (c) end view of the BCAL showing all 48 modules and (d) an end view of a module showing read-out segmentation. Details are given in the text.

#### https://halldweb.jlab.org/doc-public/DocDB/ShowDocument?docid=2913



**FIGURE 3.** Left: photo of SiPM array Hamamatsu MPPC S12045(X) with dashed lines indicating the sensitive tiles. Right: Drawings of SiPM array. Note that the back side behind the active sensors is bare, which allows for direct cooling.

#### Considered configuration: SiPMs applications to GlueX Calorimetry

