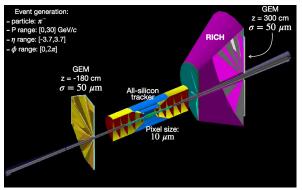
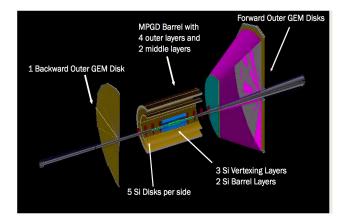


Tracking Working Group


F. Bossu, D. Elia, L. Gonella, M. Posik

Integration Meeting August 25th, 2021 Baseline (0) and Baseline+ (1)

Baseline: B-0.0, P-0.0, N-0.0

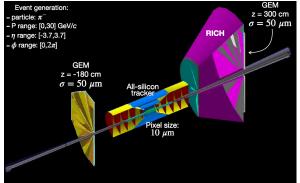

- 2 Si vertex layers (r = 3.3,5.7 cm)
- 4 Si barrel layers (r = 21, 22.68, 39.3, 43.23)
- 5 + 5 Si Disks (inner r = 3.18 5.91 cm, outer r = 18.5 43.23 cm)
- o Outer GEMs on hadron and electron sides

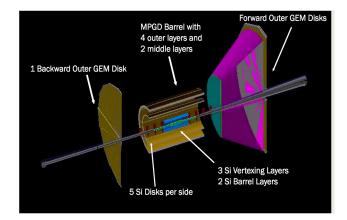
□ Baseline+: B-1.0, P-1.0, N-1.0

- 3 Si vertex layers (r = 3.64, 4.45, 5.26)
- 2 Si barrel layers (r = 13.38, 18 cm)
- 6 MM barrels (r = 47.7 77.47 cm)
- \circ 5 + 5 Si Disks (inner r = 3.64 9.93 cm, outer r = 7.13 19 cm)
- $\circ~$ Outer GEMs on hadron and electron sides

Baseline (0) and Baseline+ (1): Pros and Cons

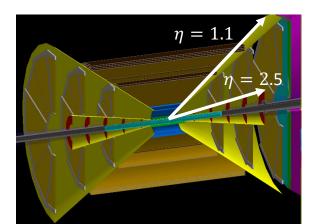
Baseline: B-0.0, P-0.0, N-0.0


- Pros:
 - Meets most PWG requirements
 - Has good start for Si support structure
- $\circ~$ Cons:
 - Misses momentum resolution in large $|\eta|$ regions
- \circ DD4Hep
 - Detectors and initial Si support/services implemented
 - MPGD 2D readout needs implementation

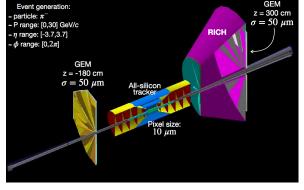

Baseline+: B-1.0, P-1.0, N-1.0

- \circ Pros:
 - Meets most PWG requirements
- $\circ~$ Cons:
 - Misses momentum resolution in large $|\eta|$ regions
 - Gaps in acceptance
 - No initial Si support implementation
- o DD4Hep
 - Detectors implemented
 - MPGD 2D readout needs implementation
 - Support/services need implementation

ATHENA Integration Meeting August 25^{th} , 2021


Baseline (0) and Projective Baseline+

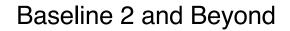
Baseline: B-0.0, P-0.0, N-0.0


- o 2 Si vertex layers (r = 3.3,5.7 cm)
- 4 Si barrel (r = 21, 22.68, 39.3, 43.23)
- o 5 + 5 Si Disks (inner r = 3.18 5.91 cm, outer r = 18.5 43.23 cm)
- o Outer GEMs on hadron and electron sides

□ Baseline+ → Projective Baseline+

- 3 Si vertex (r = 3.64, 4.45, 5.26)
- 2 Si barrel (r = 13.38, 18 cm)
- 6 MM barrels (r = 47.7 77.47 cm)
- \circ 5 + 5 Si Disks (inner r = 3.64 9.93 cm, outer r = 5.4 20 cm)
- o Outer GEMs on hadron and electron sides
- Inner GEMs (inner r= 13.4 25.6 cm, outer r = 43.07 89.27 cm)


Projective (Hybrid) Baseline+: Pros and Cons


□ Projective → Baseline+

\circ Pros:

- Meets most PWG requirements
 - Preliminary performance results shown
 - Tracking Working Group Meeting
 - Integration Meeting
- Better or comparable performance as baseline+
- No acceptance gaps
- Has some initial support/service
- Minimizes material over η range
- o Cons:
 - Misses momentum resolution in large $|\eta|$ regions
 - Need full MC study for
 - Displaced vertex → PWGs
 - Localized material effect on EMCal \rightarrow not a clear show stopper
 - Material localized and not in transvers plane (wrt z)
- \circ DD4Hep
 - Detectors implemented
 - MPGD 2D readout needs implementation
 - Support/services need implementation

Common Improvements:

- o Extend lever arm of Si disks
- \circ Add potential Si disk behind mRICH \rightarrow help with p resolution in the electron direction
- o Iterate on support/services to make implementation in simulation more realistic

□ Baseline improvements:

- o Add barrel MPGD layers near DIRC radial position
- □ Baseline+ (hybrid)
 - Add MPGD trackers to cover acceptance gaps
- □ Baseline+ (Projective hybrid)
 - Optimize MPGD barrel and GEM position for barrel PID covering 95—105 cm radial volume
- No strong consensus for baseline 2
 - o Full simulation results for the two baselines can guide this decision
 - More can be learned from running Projective Baseline+ than Non-projective Baseline+
 - Propose to make Projective Baseline+ our Baseline+ to be simulated in ATHENA

