BNL Virtual HET Seminar

Enhancing or Delaying Electroweak Phase Transitions via Simple Scalar Extensions

Zhen Liu University of Minnesota Oct 28th, 2021

Higgs discovered and then what?

Zhen Liu SM+Scalars EWPT Exotica BNL HET Seminar

Electroweak Phase Transition

At finite temperatures, the Higgs potential receives thermal correction from degrees of freedom coupled to the Higgs field

$$V(H) = -(\mu_H^2 - c_H T^2) |H|^2 + \lambda_H |H|^4 + \cdots$$

Higgs thermal mass

depends on particle content that couples to the Higgs

Zhen Liu SM+Scalars EWPT Exotica

EW symmetry in the early universe: SM

Excluding the possibility of Electroweak baryogenesis (EWBG)

Zhen LiuSM+Scalars EWPT ExoticaBNL HET Seminar

Outline

A real singlet extension to Enhance EWPT
A new approach to Delayed (or non-restoring) EW

Based upon work with M. Carena and Y.-K. Wang, <u>1911.10206</u> M. Carena, C. Krause, Y.-K. Wang, <u>2104.00638</u>

• A real singlet extension to Enhance EWPT

Based upon work with M. Carena and Y.-K. Wang, <u>1911.10206</u>

Enhancing EWPT through Singlet Extensions

One of the most generic extensions to Enhance EWPT; An important b<u>enchmark to understand;</u>

$$V_0(h,s) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m h^2 s^2$$

+(explicit Z2 - breaking terms)

Enhancing EWPT through Singlet Extensions

One of the most generic extensions to Enhance EWPT; An important b<u>enchmark to understand;</u>

$$V_0(h,s) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m h^2 s^2$$

Zhen Liu SM+Scalars EWPT Exotica

Spontaneous Z2 breaking Singlet Extension: a missing case

However, no clear studies on the Spontaneous Z2 breaking case

$$V_0(h,s) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m h^2 s^2$$

+(explicit Z2 - breaking terms)

Well-Motivated:

- As a generic case possible for singlet extensions, which also leads to a rich thermal history;
- As a proxy (simplified discussion; with appropriate rescaling of couplings to match the d.o.f.) to evaluate:
 - Dark sector gauge theories needs to be Higgsed;
 - Dark Higgs talks to our sector through the $(H^+H)(H_d^+H_d)$ mixing quartic;

But Challenging to begin with!

Domain-wall problem solved by higher dimensional and highly suppressed operators that does not affect the phenomenology in this talk.

Zhen Liu SM+Scalars EWPT Exotica

Spontaneous Z2 breaking Singlet Extension: a challenging case

However, no clear studies on the Spontaneous Z2 breaking case

 m_S [GeV]

Zhen Liu

SM+Scalars EWPT Exotica

$$V_0(h,s) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m h^2 s^2$$

+(explicit Z2 - breaking terms)

Spontaneous Z2 breaking Singlet Extension: a challenging case

However, no clear studies on the Spontaneous Z2 breaking case

$$V_0(h,s) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}\mu_s^2 s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m h^2 s^2$$

+(explicit Z2 - breaking terms)

One can also get a fee performing the usual

- tree-level integra phase generates (1
- The UV Z2 relation for $(H^+H)^n$;
- YOU'RE JOKING • Operator generate modify the Higgs potential enough to enhance the EWPT

Zhen Liu **SM+Scalars EWPT Exotica** BNL HET Sei

Our study: A rich thermal History and enhanced EWPT are possible

Z2 and EW restoring High Temperature:

- Scenario A: two-step phase transition where last step is (0,w)->(v,w)
- Scenario B: one-step phase transition where last step is (0,0)->(v,w)

Other thermal histories are also possible, but hardly enhancing the EWPT

2

Zhen LiuSM+Scalars EWPT ExoticaBNL HET Seminar

Near Criticality Condition

The calculations are carried out in a fixed Landau gauge. The gauge dependence of such calculation is long known since Jackiw and Dolan 74', Fukuda and T. Kugo, 76', etc., and also by Patel and Ramsey-Musolf 11', Konstantin et al 12'.

We perform our numerical study with a thermal potential including Coleman-Weinberg and daisy resummation, and further perform a nucleation calculation. The physical effects can be understood in most part via a high-temperature expansion approximation with the thermal potential alone.

$$V(h,s,T) \approx \frac{1}{2}(-\mu_h^2 + c_h T^2)h^2 - E^{\rm SM}Th^3 + \frac{1}{4}\lambda_h h^4 + \frac{1}{2}(\mu_s^2 + c_s T^2)s^2 + \frac{1}{4}\lambda_s s^4 + \frac{1}{4}\lambda_m s^2 h^2$$

For scenarios A, both in its Z2 restoring and non-restoring case, the VEVs between the last step of phase transition is:

$$\tilde{w}(T_c) = \sqrt{\frac{-\mu_s^2 - c_s T_c^2}{\lambda_s}}$$
$$\tilde{w}(T_c) = \sqrt{\frac{-\mu_s^2 - c_s T_c^2}{\lambda_s}}$$
$$v_c \equiv v(T_c) = \frac{8E^{\mathrm{SM}}\lambda_s}{4\lambda_h\lambda_s - \lambda_m^2}T_c, \qquad w(T_c) = \sqrt{\frac{-\mu_s^2}{\lambda_s} - T_c^2 \left[\frac{c_s}{\lambda_s} + 32\frac{(E^{\mathrm{SM}})^2\lambda_s\lambda_m}{4\lambda_h\lambda_s - \lambda_m^2}\right]}$$

Whose zero-temperature a vaccuum energy difference is:

 $(\tilde{v}, 0)$

(0, 0)

$$\Delta V \equiv V(0, \tilde{w}|_{T=0}, T=0) - V(v_{\rm EW}, w_{\rm EW}, T=0) = \frac{v^4}{4} \left(\lambda_h - \frac{\lambda_m^2}{4\lambda_s}\right) = \frac{v^4}{4} \tilde{\lambda}_h$$

and vacuum stability condition is:

$\left(\lambda_h - \frac{\lambda_m^2}{4\lambda_s}\right) > 0 \quad \mathbf{13}$

Zhen Liu SM+Scalars EWPT Exotica BNL HET Seminar

Near Criticality Condition

Smaller potential depth at zero temperature, less temperature it takes to be degenerate: lower $T_{
m c}$

And also larger field value $v_{\rm c}$ at the critical temperature (closer to $v_{\rm EW}$):

Vacuum stability condition is:

$$\lambda_h - \frac{\lambda_m^2}{4\lambda_s} > 0$$

- When near criticality, a small T_c is expected as tiny amount of thermal correction is sufficient to make two vaccuum states equal in energy.
- This also implies a high value of V_c that is near 246 GeV.
 Implying large V_c/T_c

Figure also indicates how good a high temperature approximation is. BNL HET Seminar An interesting alternative by varying Higgs quartic coupling, Davoudiasl, 21'

In other word...

Higgs Exotic Decays In the mass basis: $\frac{v_c}{T_c} = (\frac{v_c^{SM}}{T_c^{SM}}) \frac{\lambda_h^{SM}}{\lambda_h} = (\frac{v_c^{SM}}{T_c^{SM}}) [1 + \sin^2\theta \ \frac{m_H^2 - m_R^2}{m_S^2}]$

- A firm prediction of a light scalar in this model;
- Higgs exotic decay into a pair of light scalars is a crucial probe;
- Higgs exotic decays complements the Higgs precision program;
- Higgs exotic decays requires further studies of **merged jets** for lighter singlet masses(Jung, Liu, Wang, Xie, 21');
- Also possible to have long-lived Higgs exotic decays in certain parameter space; (e.g., Craig et al, 18'; Liu, Liu, Wang, 18')

Higgs Trilinears

- Higgs trilinear coupling also modified;
- Can be either enhanced or suppressed by O(30%)
- Higgs precision program complementary (Grojean, Gu, Liu et al, 17');
- Double Higgs production at the HL-LHC and SPPC, FCC-hh provides additional insights into the mode (Carena, Riembau, Liu, 18'; Liu et al 19');

Gravitational Wave Signature

Gravitational wave provide complementary probe to the nature of first order EWPT in the mode.

Sound wave dominants the spectra.

Green: scenario A; Orange: scenario B; Red: full CW calculation

Outline

A real singlet extension to Enhance EWPT
A new approach to Delayed (or non-restoring) EW

Based upon work with M. Carena and Y.-K. Wang, <u>1011.0206</u> M. Carena, C. Krause, Y.-K. Wang, <u>2104.00638</u>

Symmetry non-restoration

```
P(\chi, \eta) = \frac{1}{2} \mathfrak{M}_{\chi}^{2} \chi_{A} \chi_{A} + \frac{1}{2} \mathfrak{M}_{\eta}^{2} \eta_{a} \eta_{a} + \frac{1}{4} e_{\chi\chi}^{2} (\chi_{A} \chi_{A})^{2}
                          -\frac{1}{2}e_{\chi n}^{2}(\chi_{A}\chi_{A})(\eta_{a}\eta_{a})+\frac{1}{4}e_{nn}^{2}(\eta_{a}\eta_{a})^{2},
```

Symmetry non-restoration has be studied to discuss:

- High scale asymmetry creation;
- UV Model building has little dependence on EW scale physics;
- Avoid low scale constraints such as electron dipole moment on CP violation;

Zhen Liu

...

Mohapatra, Senjanov'79, Dvali,

Our approach: broken EW relay

EW Symmetry Non-Restoration (EWNR)

- High scale asymmetry creation;
- UV Model building has little dependence on EW scale physics;
- Avoid low scale constraints such as electron dipole moment on CP violation;

Zhen Liu SM+Scalars EWPT Exotica

The model and the effective potential

$$V_{\mathbb{Z}_N+\mathrm{I2HDM}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 + \mu_\Phi^2 (\Phi^{\dagger} \Phi) + \lambda_\Phi (\Phi^{\dagger} \Phi)^2 + \lambda_{H\Phi} (H^{\dagger} H) (\Phi^{\dagger} \Phi) + \widetilde{\lambda}_{H\Phi} (H^{\dagger} \Phi) (\Phi^{\dagger} H)$$
$$+ \frac{\mu_\chi^2}{2} \chi_i^2 + \frac{\widetilde{\lambda}_\chi}{4} \chi_i^4 + \frac{\lambda_\chi}{4} (\chi_i \chi_i)^2 + \frac{\lambda_{\Phi\chi}}{2} \chi_i^2 (\Phi^{\dagger} \Phi) + \frac{\lambda_{H\chi}}{2} \chi_i^2 (H^{\dagger} H)$$

- fixed parameters: $\{\mu_H^2, \lambda_H\}$,
- free parameters: $\{\mu_{\Phi}^2, \mu_{\chi}^2, \lambda_{\Phi}, \lambda_{\chi}, \lambda_{\Phi\chi}, \lambda_{H\Phi}, N\},\$
- free parameters set to zero: $\{\widetilde{\lambda}_{H\Phi}, \lambda_{H\chi}, \widetilde{\lambda}_{\chi}\},\$

Can be induced by RGE

Zero temperature constraints

$$\langle \{h, \varphi, \chi_1, \cdots, \chi_N\} \rangle = \{v_0, 0, 0, \cdots, 0\}$$

Vacuum stability

Bounded from below (BFB)

$$\lambda_H > 0, \qquad \lambda_\Phi > 0, \qquad \lambda_\chi > 0,$$

 $\lambda_{H\Phi} > -\sqrt{4\lambda_H\lambda_\Phi}, \qquad \lambda_{\Phi\chi} > -\sqrt{4\lambda_\Phi\lambda_\chi}, \qquad \lambda_{H\chi} > -\sqrt{4\lambda_H\lambda_\chi},$

$$\sqrt{4\lambda_H\lambda_\Phi\lambda_\chi} + \lambda_{H\Phi}\sqrt{\lambda_\chi} + \lambda_{\Phi\chi}\sqrt{\lambda_H} + \lambda_{H\chi}\sqrt{\lambda_\Phi} + \sqrt{\left(\lambda_{H\Phi} + \sqrt{4\lambda_H\lambda_\Phi}\right)\left(\lambda_{\Phi\chi} + \sqrt{4\lambda_\Phi\lambda_\chi}\right)\left(\lambda_{H\chi} + \sqrt{4\lambda_H\lambda_\chi}\right)} > 0$$
(tree level, copositivity of the quadratic potential)

Zhen LiuSM+Scalars EWPT ExoticaBNP2HET Seminar

Effective Potential

Zero temperature part (Coleman-Weinberg potential)

> Finite temperature part

$$V_{CW}\left(\{M_i^2(\hat{\Phi})\};\mu_{\rm R}\right) = \frac{1}{64\pi^2} \sum_{i={\rm B},{\rm F}} (-1)^{2S_i} n_i M_i^4(\hat{\Phi}) \left[\log\frac{M_i^2(\hat{\Phi})}{\mu_{\rm R}^2} - a_i\right]$$
$$V_{\rm 1-loop}^T(\{M_k^2(\hat{\Phi})\},T) = \frac{T^4}{2\pi^2} \left[\sum_{i=B} n_i J_B\left(\frac{M_i^2(\hat{\Phi})}{T^2}\right) - \sum_{i=F} n_i J_F\left(\frac{M_i^2(\hat{\Phi})}{T^2}\right)\right],$$

with
$$J_{B/F}(y) = \int_0^\infty dx \ x^2 \log\left(1 \mp e^{-\sqrt{x^2+y}}\right)$$

 $G_{0,r}G^{\pm}(\varphi, \phi_0, \phi^{\pm}, \gamma, \gamma, W^{\pm}, Z, t)$

Degrees for freedom in the plasma:

High temperature expansion and the thermal mass

 $\{h, 0\}$

$$V_{\mathbb{Z}_N+\mathrm{I2HDM}}^{\mathrm{MF}} = -\frac{1}{2} \left(\mu_H^2 - c_h T^2 \right) h^2 + \frac{1}{2} \left(\mu_\Phi^2 + c_\varphi T^2 \right) \varphi^2 + \frac{1}{2} \left(\mu_\chi^2 + c_\chi T^2 \right) \chi_i^2$$

$$+ \frac{\lambda_H}{4} h^4 + \frac{\lambda_\Phi}{4} \varphi^4 + \frac{\tilde{\lambda}_\chi}{4} \chi_i^4 + \frac{\lambda_\chi}{4} (\chi_i \chi_i)^2 + \frac{\Lambda_H \Phi}{4} \varphi^2 h^2 + \frac{\lambda_{\Phi\chi}}{4} \varphi^2 \chi_i^2 + \frac{\lambda_{H\chi}}{4} h^2 \chi_i^2$$

$$(\text{bedding order in the bigh T expansion and the start of the bigh T expansion and the start of the bigh T expansion and the bight T exp$$

(leading order in the high-T expansion, no CW)

e.g.,
$$c_{\varphi} = \frac{\lambda_{\Phi}}{2} + \frac{\lambda_{H\Phi} + \tilde{\lambda}_{H\Phi}/2}{6} + \frac{3g^2 + g'^2}{16} + \frac{N\frac{\lambda_{\Phi\chi}}{24}}{24} \longrightarrow \frac{\text{Being negative}}{\text{results in a non-zero inert Higgs vertex}}$$

Zhen Liu SM+Scalars EWPT Exotica BNB3HET Seminar

A first look

Non-restoration

$$c_{arphi} = rac{\lambda_{\Phi}}{2} + rac{\lambda_{H\Phi} + \widetilde{\lambda}_{H\Phi}/2}{6} + rac{3g^2 + g'^2}{16} + rac{Nrac{\lambda_{\Phi\chi}}{24}}{6} < 0$$

Transition

Zhen Liu SM+Scalars EWPT Exotica

Benchmark A

Zhen Liu SM+Scalars EWPT Exotica

Benchmark B

Field value at Minimum [GeV]

Zhen Liu **SM+Scalars EWPT Exotica**

Pheno Considerations

Higgs invisible decays

$$\Gamma(h
ightarrow ss) = rac{\lambda_{Hs}^2 v_0^2}{32\pi m_h} \sqrt{1-rac{4m_s^2}{m_h^2}}$$

$$\sqrt{N\lambda_{H\chi}^2 + 2(\lambda_{H\Phi} + \tilde{\lambda}_{H\Phi})^2 + 2\lambda_{H\Phi}^2} \leq 0.015 \ (0.007) \text{ for LHC(HL - LHC)}$$

Z boson invisible decays

Excludes all inert masses below 45 GeV.

Electroweak precision observables (EWPO)

$$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D}_{\mu} H)^2, \ c_T = \frac{\widetilde{\lambda}_{H\Phi}^2}{192 \pi^2 \mu_{\Phi}^2}$$

Higgs precision measurements

 $\frac{4m_s^2}{m_h^2}$ A decoupling behavior:
Put tuning aside, at zero
temperature (deep IR), one can
decouple all the new physics at
tree-level (except for the gauge
coupling of the inert doublet) and
achieve huge modifications to
thermal history.
Higgs doesn't need to couple to
new physics (directly at tree-level,
one can turn all mixing quarties to
be zero).

Corrections to Higgs couplings, as well as Higgs to gauge boson couplings, are generated via loops. They provide less stringent constraints on Higgs-inert and Higgs-singlets cross quartics, than the Higgs invisible decay searches.

Disappearing tracks (charged states)

Disappearing track searches exclude Higgsinos up to 78 GeV. Charged inert Higgs has smaller (Drell-Yan) production rate compared to Higgsinos. And the search can be avoided by turning on a tiny $\tilde{\lambda}_{H\Phi}$ that generates splitting between the charged and neutral inert states.

Zhen LiuSM+Scalars EWPT ExoticaBNP7HET Seminar

Conclusion

• A real singlet extension to Enhance EWPT

- Spontaneous Z2 extension are motived by its connection to dark sector physics, but its role in EWPT is was not clear;
- We identify a rich thermal history is still possible with near criticality condition, and develop robust understanding of it;
- Predicts light scalar that leads to new and important program of Higgs exotic decays; Modified Higgs couplings through mixing effects; Modified Higgs trilinear couplings; Certain model space can be probed by the Gravitation waves.
- A new approach to Delayed (or non-restoring) EW
 - Help enable EWBG
 - We provide a method where the EWNR is achieved by transmitting the SM broken electroweak symmetry to an inert Higgs sector at very high temperatures;
 - Pheno testable but also feature "decoupling".

Thank you!

Backup

Zhen LiuSM+Scalars EWPT ExoticaBNL HET Seminar

$$\begin{split} &\beta(g_s) = -7g_s^3 \\ &\beta(g) = -3g^3 \\ &\beta(g') = 7g'^3 \\ &\beta(\mu_H^2) = -4\lambda_{H\Phi}\mu_{\Phi}^2 - 2\tilde{\lambda}_{H\Phi}\mu_{\Phi}^2 - \mu_H^2(-12\lambda_H + \frac{3}{2}(3g^2 + g'^2) - 6y_t^2) - N\mu_{\chi}^2\lambda_{H\chi} \\ &\beta(\mu_{\chi}^2) = -4\lambda_{H\Phi}\mu_{H}^2 - 2\tilde{\lambda}_{H\Phi}\mu_{\chi}^2 - \mu_{\Phi}^2(-12\lambda_{\Phi} + \frac{3}{2}(3g^2 + g'^2)) - N\mu_{\chi}^2\lambda_{\Phi\chi} \\ &\beta(\mu_{\chi}^2) = 4\mu_{\Phi}^2\lambda_{\Phi\chi} + 6\tilde{\lambda}_{\chi}\mu_{\chi}^2 - 4\mu_{H}^2\lambda_{H\chi} + 2(N + 2)\mu_{\chi}^2\lambda_{\chi} \\ &\beta(\lambda_H) = 2\lambda_{H\Phi}^2 + 2\lambda_{H\Phi}\tilde{\lambda}_{H\Phi} + \tilde{\lambda}_{H\Phi}^2 + 24\lambda_{H}^2 - 3\lambda_H(3g^2 + g'^2) \\ &+ \frac{3}{8}(3g^4 + 2g^2g'^2 + g'^4) + 12\lambda_Hy_t^2 - 6y_t^4 + \frac{N}{2}\lambda_{H\chi}^2 \\ &\beta(\lambda_{\Phi}) = 2\lambda_{H\Phi}^2 + 2\lambda_{H\Phi}\tilde{\lambda}_{H\Phi} + \tilde{\lambda}_{H\Phi}^2 + 24\lambda_{\Phi}^2 - 3\lambda_{\Phi}(3g^2 + g'^2) \\ &+ \frac{3}{8}(3g^4 + 2g^2g'^2 + g'^4) + \frac{N}{2}\lambda_{\Phi\chi}^2 \\ &\beta(\lambda_{\chi}) = 2\lambda_{\Phi\chi}^2 + 2\lambda_{H\chi}^2 + 16\lambda_{\chi}^2 + 12\tilde{\lambda}_{\chi}\lambda_{\chi} + 2N\lambda_{\chi}^2 \\ &\beta(\lambda_{\mu}) = \frac{3}{4}(3g^4 - 2g^2g'^2 + g'^4) + 4\lambda_{H\Phi}^2 + 2\tilde{\lambda}_{H\Phi}^2 + 4\tilde{\lambda}_{H\Phi}(\lambda_H + \lambda_{\Phi}) \\ &+ \lambda_{H\Phi}(12\lambda_{\Phi} + 12\lambda_H - 3(3g^2 + g'^2)) + 6\lambda_{H\Phi}y_t^2 \\ &\beta(\tilde{\lambda}_{\chi}) = 18\tilde{\lambda}_{\chi}^2 + 24\tilde{\lambda}_{\chi}\lambda_{\chi} \\ &\beta(\lambda_{\Phi\chi}) = (-\frac{3}{2}(3g^2 + g'^2) + 12\lambda_{\Phi} + 6\tilde{\lambda}_{\chi} + 4\lambda_{H\chi} + 2N\lambda_{\chi} + 4\lambda_{\chi} + 6y_t^2)\lambda_{H\chi} \\ &+ 4\lambda_{H\Phi}\lambda_{H\chi} + 2\tilde{\lambda}_{H\Phi}\lambda_{H\chi} \\ &\beta(\lambda_{H\chi}) = (-\frac{3}{2}(3g^2 + g'^2) + 12\lambda_{H} + 6\tilde{\lambda}_{\chi} + 4\lambda_{H\chi} + 2N\lambda_{\chi} + 4\lambda_{\chi} + 6y_t^2)\lambda_{H\chi} \\ &+ 4\lambda_{H\Phi}\lambda_{\Phi\chi} + 2\tilde{\lambda}_{H\Phi}\lambda_{\Phi\chi} \\ &\beta(\tilde{\lambda}_{H\Phi}) = 3g^2g'^2 - 3\tilde{\lambda}_{H\Phi}(3g^2 + g'^2) + 6\tilde{\lambda}_{H\Phi}y_t^2 + 4\tilde{\lambda}_{H\Phi}(\lambda_H + \lambda_{\Phi}) \\ &+ 8\lambda_{H\Phi}\tilde{\lambda}_{H\Phi} + 4\tilde{\lambda}_{H\Phi}^2 \\ &\beta(y_h) = -8y_tg_s^2 - \frac{9}{1}y_tg^2 - \frac{17}{17}y_tg'^2 + \frac{9}{2}y_s^3. \end{split}$$

HET Seminar

Asymmetry washout - a model building consideration

The (EW) sphaleron process

for all temperatures from UV to zero T.

BN^{B2}HET Seminar

 T_{Φ}^{c}

 T_H^c

T

 T_c

T

 T_H^r

 T_{Φ}^{r}

Zhen Liu SM+Scalars EWPT Exotica

Supplementary: Sphaleron washout and dilution factor

Dilution factor
$$f_{w.o.} = 1 - \frac{n_B(t_{now})}{n_B(0)} = 1 - \exp\left[-\frac{13n_f}{2}\int_0^{T_{\text{high}}} dT \frac{\Gamma(T)}{VT^6} M_{Pl} \sqrt{\frac{90}{8\pi^3 g^*}}\right]$$
$$\frac{\Gamma}{V} = 4\pi\omega_- \mathcal{N}_{tr} \mathcal{N}_{rot} T^3 \left(\frac{v_{\text{EW}}(T)}{T}\right)^6 \kappa \exp\left[-E_{sph}(T)/T\right]$$

Zhen Liu SM+Scalars EWPT Exotica BNL HET Seminar

Supplementary - mean field analysis

$$P_{\Phi}$$
 phase : $w(T) = \sqrt{-\frac{\mu_{\Phi}^2 + c_{\varphi}T^2}{\lambda_{\Phi}}}$ P_H phase : $v(T) = \sqrt{\frac{\mu_H^2 - c_h T^2}{\lambda_H}}$
The critical temperature : $T_c = \sqrt{\frac{\mu_H^2 + \sqrt{\lambda_H/\lambda_{\Phi}}\mu_{\Phi}^2}{c_h - \sqrt{\lambda_H/\lambda_{\Phi}}c_{\varphi}}}$

$$P_{H\Phi}$$
 phase : $\widetilde{v}(T) = \sqrt{\frac{\widetilde{\mu}_{H}^{2} - \widetilde{c}_{h}T^{2}}{\widetilde{\lambda}_{H}}}, \quad \widetilde{w}(T) = \sqrt{-\frac{\widetilde{\mu}_{\Phi}^{2} + \widetilde{c}_{\varphi}T^{2}}{\widetilde{\lambda}_{\Phi}}}$

which is the global minimum as long as existing if $4\lambda_{\Phi}\lambda_{H} - \lambda_{H\Phi}^{2} \ge 0$

The critical temperatures :
$$T_H^c = \sqrt{\frac{\widetilde{\mu}_H^2}{\widetilde{c}_h}}, \quad T_\Phi^c = \sqrt{\frac{\widetilde{\mu}_\Phi^2}{-\widetilde{c}_{\varphi}}}$$

Relevant parameters:

$$\begin{split} \widetilde{\mu}_{H}^{2} &\equiv \mu_{H}^{2} + \frac{\Lambda_{H\Phi}}{2\lambda_{\Phi}}\mu_{\Phi}^{2}, \quad \widetilde{\mu}_{\Phi}^{2} \equiv \mu_{\Phi}^{2} + \frac{\Lambda_{H\Phi}}{2\lambda_{H}}\mu_{H}^{2} \\ \widetilde{c}_{h} &\equiv c_{h} - \frac{\Lambda_{H\Phi}}{2\lambda_{\Phi}}c_{\varphi}, \quad \widetilde{c}_{\varphi} \equiv c_{\varphi} - \frac{\Lambda_{H\Phi}}{2\lambda_{H}}c_{h}, \\ \widetilde{\lambda}_{H} &\equiv \lambda_{H} - \frac{\Lambda_{H\Phi}^{2}}{4\lambda_{\Phi}}, \quad \widetilde{\lambda}_{\Phi} \equiv \lambda_{\Phi} - \frac{\Lambda_{H\Phi}^{2}}{4\lambda_{H}} \end{split}$$

BNE4HET Seminar

